真空 ›› 2025, Vol. 62 ›› Issue (2): 12-21.doi: 10.13385/j.cnki.vacuum.2025.02.02
王杰1, 张经纶2, 张增海1, 鄂东梅1, 王玲玲1, 刘诗梦1, 战春鸣1, 张丕显1, 宋青竹1, 吴思炜3
WANG Jie1, ZHANG Jinglun2, ZHANG Zenghai1, E Dongmei1, WANG Lingling1, LIU Shimeng1, ZHAN Chunming1, ZHANG Pixian1, SONG Qingzhu1, WU Siwei3
摘要: 结合高温合金激光增材制造技术的国内外研究现状,综述了高温合金粉末材料制备方法和回收再利用对粉末性能的影响规律,探讨了模拟计算技术在高温合金增材制造工艺和材料设计中的应用,总结了增材制造高温合金常见缺陷及优化方法,最后介绍了高温合金增材制造的国内外标准化进程。
中图分类号: TF306;TB35
[1] REED R C.高温合金基础与应用[M]. 何玉怀,赵文侠,曲士昱, 译. 北京:机械工业出版社,2016. [2] SARKAR R, CHEN B, FITZPATRICK M, et al.Additive manufacturing-based repair of In718 superalloy and high-cycle fatigue assessment of the joint[J]. SSRN Electronic Journal, 2022,60: 103276. [3] 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9): 684-688. [4] 全国增材制造标准化技术委员会. 增材制造工艺分类及原材料:GB/T 35021-2018[S]. 北京:中国标准出版社,2019. [5] MURRAY S P, PUSCH K M, POLONSKY A T, et al.A defect-resistant Co-Ni superalloy for 3D printing[J]. Nature communications, 2020,11(1):4975. [6] EKOĞLU E, O’BRIEN A D, LIU J, et al. Strengthening additively manufactured Inconel 718 through in-situ formation of nanocarbides and silicides[J]. Additive Manufacturing, 2023,67:103478. [7] PEACHEY D D, CARTER C P, GARCIA-JIMENEZ A, et al.Directional recrystallization of an additively manufactured Ni-base superalloy[J]. Additive Manufacturing. 2022, 60: 103198. [8] NASA. NASA’s new material built to withstand extreme conditions[EB/OL]. (2022-04-12) [2024-05-08]. https://www.nasa.gov/aeronautics/nasas-new-material-built-to-withstand-extreme-conditions/. [9] GE Aerospace. GE aerospace T901 engines accepted by U.S. army in support of improved turbine engine program[EB/OL]. (2023-10-13) [2024-05-08]. https://www.geaerospace.com/news/press-releases/defense-engines/ge-aerospace-t901-engines-accepted-us-army-support-improved-turbine. [10] 3D Systems. DMP Flex 350、DMP Flex 350 Dual and DMP Flex 350 Triple[EB/OL].[2024-07-23]. https://cn.3dsystems.com/3d-printers/dmp-flex-350?ind=turbomachinery. [11] SUN Z, MA Y, PONGE D, et al.Thermodynamics-guided alloy and process design for additive manufacturing[J]. Nature communications. 2022,13(1):4361. [12] EOS. Nickel alloys[EB/OL].[2024-07-23]. https://www.eos.info/en-us/metal-solutions/metal-materials/nickel-alloys#eos-nickelalloy-hx. [13] 王华明. 大型金属构件增材制造技术对重大装备结构、材料和制造业的影响[P/OL]. [2024-05-10].https://www.kczg.org.cn/yuanshi/detail?id=113045. [14] 国家增材制造创新中心.“利器”出鞘!RC系列SLM设备助力科研院校结新果![EB/OL]. (2022-10-27) [2024-05-08]. https://www.niiam.com/2022/10/27/. [15] 铂力特.智能制造再升级,BLT-MES 2.0正式上线[EB/OL]. (2023-09-09) [2024-05-10]. https://www.xa-blt.com/newslist/. [16] TAMURA R, OSADA T, MINAGAWA K, et al.Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy[J]. Materials & Design, 2021, 198:109290. [17] DUNKLEY J J.Metal powder atomisation methods for modern manufacturing[J]. Johnson Matthey Technology Review, 2019, 63(3):226-232. [18] DUNKLEY J J, TELFORD B.Control of 'satellite' particles in gas atomisation[C]//World Congress on Powder Metallurgy and Particulate Materials: Advances in Powder Metallurgy & Particulate Materials. Orlando, USA, 2002. [19] DUNKLEY J J.Hot gas atomization: economic and engineering aspects[C]// World Congress and Exhibition on Powder Metallurgy. Vienna, Austria, 2004. [20] BECKERS D, ELLENDT N, FRITSCHING U, et al.Impact of process flow conditions on particle morphology in metal powder production via gas atomization[J]. Advanced Powder Technology, 2020 ,31(1):300-311. [21] HANN D, STRAŽIŠAR J. Influence of particle size distribution, moisture content, and particle shape on the flow properties of bulk solids[J]. Instrumentation Science and Technology. 2007,35(5):571-584. [22] HIGASHI M, KANNO N.Effect of initial powder particle size on the hot workability of powder metallurgy Ni-based superalloys[J]. Materials & Design, 2020,194:108926. [23] ZERWAS A A, DA SILVA F C, GUARDANI R, et al. Impact of the gas atomizer nozzle configuration on metal powder production for additive manufacturing[J]. Powder Technology, 2024, 443:119974. [24] ZHONG C L, CHEN J, LINNENBRINK S, et al.A comparative study of Inconel 718 formed by high deposition rate laser metal deposition with GA powder and PREP powder[J]. Materials & Design, 2016,107:386-392. [25] RUAN G, LIU C, QU H, et al.A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process[J]. Materials Science and Engineering: A, 2022, 850:143589. [26] 杨洪涛,卢志辉,孙志杨,等.等离子旋转电极雾化制粉设备国内研究现状[J].粉末冶金工业,2021,31(4):88-93. [27] DEBROY T, MUKHERJEE T, MILEWSKI J O, et al.Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 2019,18(10):1026-1032. [28] LI J, LIU W, SHEN J, et al.Research progress of the metal powder reuse for powder bed fusion additive manufacturing technology[J]. Powder Technology, 2024, 441: 119815. [29] MOGHIMIAN P, POIRIÉ T, HABIBNEJAD-KORAYEM M, et al.Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys[J]. Additive Manufacturing, 2021,43:102017. [30] WARNER J H, RINGER S P, PROUST G.Strategies for metallic powder reuse in powder bed fusion: a review[J]. Journal of Manufacturing Processes, 2024, 110:263-690. [31] GRUBER H, HENRIKSSON M, HRYHA E, et al.Effect of powder recycling in electron beam melting on the surface chemistry of alloy 718 powder[J]. Metallurgical and Materials Transactions A, 2019,50:4410-4422. [32] ROCK C, LEDFORD C, GARCIA-AVILA M, et al.The influence of powder reuse on the properties of nickel super alloy ATI 718™ in laser powder bed fusion additive manufacturing[J]. Metallurgical and Materials Transactions B, 2021,52:676-688. [33] KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al.Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia,2016, 108: 36-45. [34] WANG D, WU S B, FU F, et al.Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design,2017, 117:121-130. [35] STRONDL A, LYCKFELDT O, BRODIN H, et al.Characterization and control of powder properties for additive manufacturing[J]. Jom, 2015,67:549-554. [36] LEBAN M B, HREN M, KOSEC T.The microstructure, mechanical and electrochemical properties of 3D printed alloys with reusing powders[J].Scientific Reports, 2023, 13: 3245. [37] ARDILA L C, GARCIANDIA F, GONZÁLEZ-DÍAZ J B, et al. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting[J]. Physics Procedia, 2014,56:99-107. [38] 宋巍, 朱玉平, 梁静静, 等. 粉末循环使用对激光选区熔化GH4169合金组织及拉伸行为的影响[J]. 中国激光, 2024, 51(10): 171-180. [39] CHEN J, XU J, SEGERSÄLL M, et al. Cyclic deformation behavior of additive-manufactured IN738LC superalloys from virgin and reused powders[J]. Materials, 2022,15(24):8925. [40] SOLTANI-TEHRANI A, CHEN P, KATSARELIS C, et al.Mechanical properties of laser powder directed energy deposited NASA HR-1 superalloy: effects of powder reuse and part orientation[J]. Thin-Walled Structures, 2023,185:110636. [41] PACCOU E, MOKHTARI M, CLÉMENT KELLER, et al. Investigations of powder reusing on microstructure and mechanical properties of Inconel 718 obtained by additive manufacturing[J]. Materials Science and Engineering: A, 2021, 828:142113. [42] YI J H, KANG J W, WANG T J, et al.Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting[J]. Journal of Alloys & Compounds, 2019, 786:481-488. [43] ZHU L, XU Z F, LIU P, et al.Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy[J]. Optics & Laser Technology, 2018,98: 409-415. [44] NIE P, OJO O A, LI Z.Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J].Acta Materialia, 2014, 77:85-95. [45] XIAO W J, XU Y X, XIAO H, et al.Investigation of the Nb element segregation for laser additive manufacturing of nickel-based superalloys[J]. International Journal of Heat and Mass Transfer, 2021,180:121800. [46] RAVICHANDER B B, RAHIMZADEH A, FARHANG B, et al.A prediction model for additive manufacturing of Inconel 718 superalloy[J]. Applied Sciences, 2021 ,11(17):8010. [47] SONG W, YANG J, LIANG J, et al.A new approach to design advanced superalloys for additive manufacturing[J]. Additive Manufacturing, 2024, 84: 104098. [48] TANG Y T, PANWISAWAS C, GHOUSSOUB J N, et al.Alloys-by-design: application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202:417-436. [49] KOU S.A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88:366-374. [50] 李毅. Inconel 625合金SLM成形的仿真模拟及其热处理工艺[D]. 哈尔滨:哈尔滨理工大学, 2019. [51] 赵宇辉, 赵吉宾, 王志国, 等. Inconel 625镍基高温合金激光增材制造内应力控制方式研究[J]. 真空, 2020, 57(3): 73-79. [52] GUO C, LI G, LI S, et al.Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition[J]. Nano Materials Science, 2023, 5(1):53-77. [53] NASRALLA K, SHIHAB S K, MAHMOUD A K, et al.Estimation of induced residual stresses and corrosion behavior of machined Inconel 718 superalloy: 3D-FE simulation and optimization[J]. International Journal of Computational Materials Science and Engineering, 2022, 11(1): 2150028. [54] EMANUELLI L, DEIRMINA F, PELLIZZARI M.Heat treatment behaviour of IN718 superalloy fabricated by laser-powder bed fusion[J]. Materials Characterization, 2023, 199:112788. [55] CHUA Z Y, AHN I H, MOON S K.Process monitoring and inspection systems in metal additive manufacturing: Status and applications[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4:235-245. [56] LUPI F, PACINI A, LANZETTA M.Laser powder bed additive manufacturing: a review on the four drivers for an online control[J]. Journal of Manufacturing Processes, 2023,103:413-429. [57] YI L, SHOKRANI A, BERTOLINI R, et al.Optical sensor-based process monitoring in additive manufacturing[J]. Procedia CIRP, 2022,115:107-112. [58] 张渝, 侯慧鹏, 雷力明. 高温合金增材制造标准分析[J].材料导报, 2017, 31(增刊1): 62-65. [59] 丁红瑜, 武姝婷, 袁康, 等.增材制造国内外标准研究进展[J]. 中国材料进展, 2020, 39(12): 955-961. [60] 张洪萍, 罗凯文, 张天宇, 等.国内外增材制造发展政策及标准建设研究[J].中国高新科技, 2022, 117(9): 104-105. [61] 国家标准化管理委员会. 国家技术标准创新基地:以标准化助力高技术创新,促进高水平开放, 引领高质量发展[EB/OL]. (2021-08-23) [2024-05-15]. https://www.sac.gov.cn/jdbnhbz/bzgs/art/2021/art_960efcb891cc452ca1b08c9db17d8c5d.html. |
[1] | 陈明, 李相材, 张晓敏, 黄烁, 王冲, 胡军. 磷对镍基高温合金铸态组织和力学性能的影响*[J]. 真空, 2025, 62(2): 91-99. |
[2] | 徐萍. 镍基高温合金的熔炼方法研究[J]. 真空, 2025, 62(1): 72-77. |
[3] | 陈骋, 朱明亮, 李明玥, 何振丰, 王志国, 贺晨. 激光熔化沉积表面缺陷电涡流检测仿真*[J]. 真空, 2024, 61(4): 96-101. |
[4] | 张万福, 叶超, 李强, 李军, 王德洪, 罗俊义. 低氧氮含量K417G镍基高温合金生产工艺[J]. 真空, 2023, 60(6): 66-70. |
[5] | 万旭杰, 张华霞, 张凤祥, 高鸿儒, 马宝弘, 赵新颖, 刘坤. 高温合金真空熔炼浇铸过程对耐火材料表面冲蚀的研究[J]. 真空, 2023, 60(5): 98-101. |
[6] | 张凤祥, 马国宏, 万旭杰, 马秀萍, 吴柯汉, 张华霞. 真空浇注过程中高温合金锭表面气孔产生原因分析[J]. 真空, 2023, 60(4): 80-84. |
[7] | 张凤祥, 张鹏, 李怡, 马秀萍, 刘东方, 万旭杰, 张华霞. 一种含锆高温合金与坩埚耐火材料的界面反应研究*[J]. 真空, 2023, 60(3): 80-85. |
[8] | 冯骏骁, 左野, 王勇, 张增海, 滕龙, 沈子惟, 金贺, 宋静思, 张哲魁. 真空雾化制粉技术研究进展及展望[J]. 真空, 2022, 59(6): 87-92. |
[9] | 刘晓功, 姜楠, 郝齐赞, 罗亮, 史振学, 骆宇时. 单晶高温合金铸件尺寸效应实验研究[J]. 真空, 2022, 59(3): 80-85. |
[10] | 吴凡, 林博超, 权银洙, 陈玮, 杨洋. 电子束增材制造设备及应用进展*[J]. 真空, 2022, 59(1): 79-85. |
[11] | 马义刚, 李智慧. 超高真空和高真空技术的应用[J]. 真空, 2021, 58(4): 98-102. |
[12] | 许海鹰, 王壮, 桑兴华, 杨波, 彭勇. 丝束同轴冷阴极电子枪的研制*[J]. 真空, 2021, 58(2): 76-81. |
[13] | 宋静思, 王婷, 李秀章, 陈久强, 张哲魁. 一种大型真空精密铸造炉结构布局的研究[J]. 真空, 2021, 58(2): 31-36. |
[14] | 谭飞, 林松盛, 石倩, 代明江, 杜伟, 汪云程, 吕亮. 电弧离子镀制备NiCrAlY涂层及其抗高温氧化性能*[J]. 真空, 2020, 57(5): 7-10. |
[15] | 赵吉宾, 李论, 周波, 田同同. 增材制造分层轮廓方向平行填充轨迹生成方法*[J]. 真空, 2020, 57(3): 89-93. |
|