欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (2): 22-27.doi: 10.13385/j.cnki.vacuum.2025.02.03

• 真空应用 • 上一篇    下一篇

颗粒改性复合真空绝热板的制备与表征*

沈逍1, 靳海2, 詹衡2, 张浩天1, 陈舟1   

  1. 1.南京工业大学机械与动力工程学院,江苏 南京 211816;
    2.山西金驹煤电化有限责任公司,山西 晋城 048000
  • 收稿日期:2024-04-29 出版日期:2025-03-25 发布日期:2025-03-24
  • 通讯作者: 陈舟,副教授。
  • 作者简介:沈逍(1999-),男,江苏南京人,硕士研究生。
  • 基金资助:
    * 安徽省重点研发计划(2022a05020064)

Preparation and Characterization of Particle Modified Composite Vacuum Insulation Panels

SHEN Xiao1, JIN Hai2, ZHAN Heng2, ZHANG Haotian1, CHEN Zhou1   

  1. 1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China;
    2. Shanxi Jinju Coal Electrification Co., Ltd., Jincheng 048000, China
  • Received:2024-04-29 Online:2025-03-25 Published:2025-03-24

摘要: 真空绝热板(VIP)作为一种新型保温材料,已在众多领域被广泛应用。然而,现有玻璃纤维短切丝芯材VIP存在回弹率高、使用寿命低等问题,限制了其进一步发展。针对此问题,通过在芯材中添加纳米气相SiO2颗粒进行改性,制备出一种综合性能优异的颗粒改性复合VIP。实验系统评估了复合芯材的微观结构、分布均匀性以及压缩率与回弹率关键指标,并深入探讨了改性VIP的导热系数与气压敏感性。结果表明,颗粒改性复合VIP综合性能优异,随着气相SiO2颗粒质量分数在0%~15%范围内递增,复合VIP的压缩率由63.9%下降至53.2%,回弹率由74.9%下降至64.3%,同时VIP的气压敏感性也呈现下降趋势。

关键词: 真空绝热板, 玻璃纤维短切丝, 气相SiO2, 导热系数

Abstract: Vacuum insulation panels (VIP), as a new type of insulation material, have been widely used in various industries. However, the existing chopped strand glass fiber core material VIP has the problems of high rebound rate and low service life, which limits its further development. Therefore, a particle-modified composite VIP with excellent comprehensive performance was prepared by adding nano fumed silica particles to the core material for modification. The microstructure, uniformity, compression rate and rebound rate of the as-prepared composite core material were tested, and the thermal conductivity and pressure sensitivity of the prepared VIP were studied. The results show that the particle modified composite VIP has excellent comprehensive performance, accompanied by a fumed silica particle mass fraction of 0%-15%. With the increasing of fumed SiO2, the compression rate decreases from 63.9% to 53.2%, and the rebound rate decreases from 74.9% to 64.3%. At the same time, the pressure sensitivity of VIP also shows a downward trend.

Key words: vacuum insulation panel, chopped strand glass fiber, fumed silica, thermal conductivity

中图分类号:  TB79

[1] 陈淑祥,倪文,朱林,等.纳米孔超级绝热材料及其制备技术[J]. 新材料产业, 2003(8):72-75.
[2] ANH L D H, PÁSZTORY Z. An overview of factors influencing thermal conductivity of building insulation materials[J]. Journal of Building Engineering, 2021, 44: 102604.
[3] SCHIAVONI S, D'ALESSANDRO F, BIANCHI F, et al. Insulation materials for the building sector: a review and comparative analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 988-1011.
[4] BOAFO F E, KIM J H, AHN J G, et al.Slim curtain wall spandrel integrated with vacuum insulation panel: a state-of-the-art review and future opportunities[J]. Journal of Building Engineering, 2021, 42: 102445.
[5] DONG X, ZHANG Q Q, LAN Y L, et al.Preparation and characterization of vacuum insulation panels with hybrid composite core materials of bamboo and glass fiber[J]. Industrial Crops and Products, 2022, 188: 115691.
[6] KAN A K, ZHENG N, ZHU W B, et al.Innovation and development of vacuum insulation panels in China: a state-of-the-art review[J]. Journal of Building Engineering, 2022, 48: 103937.
[7] KALNÆS S E, JELLE B P. Vacuum insulation panel products: a state-of-the-art review and future research pathways[J]. Applied Energy, 2014, 116: 355-375.
[8] CHEN Z, CHEN Z F, QIU J L, et al.Vacuum insulation panel for green building[J]. Applied Mechanics and Materials, 2011, 71: 607-611.
[9] 陈照峰,李承东,陈清,等.真空绝热板芯材研究进展[J].科技导报,2014,32(9):59-62.
[10] ZHAO W G, YAN W, ZHANG Z C, et al.Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels[J]. Journal of Cleaner Production, 2022, 357: 131957.
[11] 齐丹丹,张晟昊,周枫.真空绝热板在节能领域的应用[J].上海节能,2020(4):352-355.
[12] 左迎峰,张彦华,顾继友,等.偶联剂对玻璃纤维增强淀粉/聚乳酸复合材料性能的影响[J].材料导报,2016,30(20):104-108.
[13] 刘建勋,朱建勋,祖群.新型高强度玻璃纤维制备与性能研究[J].功能材料,2010,41(7):1290-1293.
[14] XU T Z, CHEN Z F, YANG Y, et al.Correlation between the thermo-physical properties and core material structure of vacuum insulation panel: role of fiber types[J]. Fibers and Polymers, 2018, 19: 1032-1038.
[15] 阚安康,孟闯,郭志鹏,等.真空绝热板导热系数预测模型及实验研究[J].真空科学与技术学报,2016,36(8):935-940.
[16] 张志诚. 木纤维/玻璃纤维芯材真空绝热板的工艺研究[D]. 福建:福建农林大学,2020.
[17] 陈照峰,张俊雄,王伟伟,等.真空绝热板技术的研究现状及发展趋势[J].南京航空航天大学学报,2017,49(1):1-16.
[18] KWON J S, JANG C H, JUNG H Y, et al.Effective thermal conductivity of various filling materials for vacuum insulation panels[J]. International Journal of Heat and Mass Transfer, 2009, 52(23-24): 5525-5532.
[19] 张萍. 秸秆粉/气相二氧化硅复合芯材真空绝热板性能研究[D].南京:南京航空航天大学,2021.
[20] ASTM International. Standard specification for vacuum insulation panels: ASTM C1484-01(2018)[S]. West Conshohocken, PA,USA: ASTM, 2018.
[1] 刘卫东, 靳海, 詹衡, 苗济蘩, 陈舟. 纳米SiO2气凝胶复合芯材真空绝热板制备与性能研究*[J]. 真空, 2025, 62(1): 49-56.
[2] 郭芹良, 武越, 孙娟, 李琼, 魏茜. 结霜现象研究综述*[J]. 真空, 2020, 57(3): 67-72.
[3] 吴乐于. 不同高阻隔复合膜在带有沟槽的真空绝热板上的适用性研究[J]. 真空, 2020, 57(1): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .