欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (1): 38-44.doi: 10.13385/j.cnki.vacuum.2021.01.09

• 真空获得与设备 • 上一篇    下一篇

稀薄气体流动的粒子图像测速实验研究*

朱志鹏, 秦彬玮, 张英莉, 岳向吉, 巴德纯   

  1. 东北大学 机械工程与自动化学院,辽宁 沈阳 110819
  • 收稿日期:2020-10-16 出版日期:2021-01-25 发布日期:2021-01-26
  • 通讯作者: 巴德纯,教授,博导。
  • 作者简介:朱志鹏(1989-),男,江西省抚州市人,博士生。
  • 基金资助:
    *国家重大科学仪器设备开发专项子课题“涡旋干泵流场及热场分析”(2013YQ24042101)

Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow

ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun   

  1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2020-10-16 Online:2021-01-25 Published:2021-01-26

摘要: 建立了一套可对真空度进行调节的实验装置,从大气压开始逐渐降低系统压力,进行系列稀薄气体流动的PIV流场实验。系统压力从101kPa、90kPa逐次降至10kPa,使用所选粒子在不同系统压力下分别进行PIV实验获得测量区域流场分布情况。运用计算流体力学的方法模拟大气压条件下实验区域的内部流动,对比结果发现该种条件下数值模拟结果很好的与PIV实验测得流场结构吻合,从而验证了实验和数值模拟的可靠性和稳定性。通过对PIV实验结果进行分析:克努森数Kn≤0.14实验测量可以获得较好的流场效果;当0.14<Kn≤0.29测量区域流态仍然完整但测得的流场流速偏小;0.29<Kn≤0.86实验测得的速度显著降低且流态不完整。

关键词: 稀薄气体, 粒子图像测速, 数值模拟, 示踪粒子, 跟随性

Abstract: In this paper,a series of particle image velocimetry(PIV) flow field experiments of rarefied gas flow were carried out by setting up a set of experimental apparatus that can adjust the vacuum degree and gradually reduce the system pressure from atmospheric pressure. The system pressure was successively reduced from 101kPa and 90kPa to 10kPa,and PIV experiments were carried out with selected particles under different system pressures to obtain the flow field distribution in the as-measured area. The CFD method was used to simulate the internal flow in the experimental area under atmospheric pressure,and the comparison results show that the numerical simulation results are in good agreement with the flow field structure measured by PIV experiment, thus verifying the reliability and stability of the experiment and numerical simulation. By analyzing the results of PIV experiment:Knudsen number Kn≤0.14 better flow field effect can be obtained by experimental measurement; When 0.14<Kn≤0.29,the flow state in the measured area is still complete but the measured flow field velocity is relatively small; When 0.29<Kn≤0.86,the measured velocity is significantly reduced and the flow pattern is incomplete.

Key words: rarefied gas, PIV, numerical simulation, tracer particle, following performance

中图分类号: 

  • TB71
[1] 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.
[2] 段俐, 康琦, 申功. PIV技术的粒子图像处理方法[J]. 北京航空航天大学学报, 2000, 26(1): 79-82.
[3] 袁寿其, 李亚林, 汤跃, 等. 示踪粒子在离心泵内流场跟随性的影响因素分析[J]. 机械工程学报, 2012, 48(20): 174-181.
[4] Yang B, Wang Y, Liu J.PIV measurements of two phase velocity fields in aeolian sediment transport using fluorescent tracer particles[J]. Measurement, 2011, 44(4): 708-716.
[5] Reyes V A, Sierra-Espinosa F Z, Moya S L, et al. Flow field obtained by PIV technique for a scaled building-wind tower model in a wind tunnel[J]. Energy & Buildings, 2015, 107: 424-433.
[6] Weaver D P, Campbell D H, Muntz E P.Rarefied Gas Dynamics: Theoretical and Computational Techniques[M]//Rarefied gas dynamics: theoretical and computational techniques. American Institute of Aeronautics and Astronautics, 2015.
[7] Fan J, Shen C.Statistical simulation of low-speed rarefied gas flows[J]. Journal of Computational Physics, 2001, 167(2): 393-412.
[8] Melling A.Tracer particles and seeding for particle image velometry[J]. Measurement Scence & Technology, 1997, 8(12): 1406.
[9] Mei R.Velocity fidelity of flow tracer particles[J]. Exper-iments in Fluids, 1996, 22(1): 1-13.
[10] Malizia A, Rossi R, Poggi L A, et al.Imaging to study dust resuspension phenomena in case of loss of vacuum accidents inside the pharmaceutical industries[C]//Global Internet of Things Summit. IEEE, 2017: 1-6.
[11] Yue X J, Lu Y J, Zhang Y L, et al.Computational flu-id dynamics simulation study of gas flow in dry scroll vacuum pump[J]. Vacuum, 2015, 116: 144-152.
[12] Li Z, Li L, Zhao Y, et al.Theoretical and experimental study of dry scroll vacuum pump[J]. Vacuum, 2009, 84(3): 415-421.
[13] Mohammadi B, Pironneau O.Analysis of the K-Eps-ilon Turbulence Model[J]. John Wiley, 2009.
[14] Menter F R.Two-equation eddy-viscosity turbulence models for engineering applications[J]. Aiaa Journal, 2012, 32(8): 1598-1605.
[15] 高飞. ANSYS CFX14.0超级学习手册[M]. 北京: 人民邮电出版社, 2013.
[16] 成传松, 李云清, 王艳华, 等. 喷雾仿真中的网格依赖性[J]. 航空动力学报, 2011, 26(9): 1964-1969.
[17] Dobrev I, Massouh F.CFD and PIV investigation of unsteady flow through Savonius wind turbine[J]. Energy Procedia, 2011, 6(6): 711-720.
[18] Jones A M, Mejia K M, Ulk C, et al.Comparison of PIV and CFD Measurements of an Advanced Supersonic Research Concept Model[C]//47th AIAA Fluid Dynamics Conference, 2017: 3639.
[1] 苏天一, 张志军, 韩晶雪. 应用二维轴对称模型的微波真空干燥数值模拟*[J]. 真空, 2020, 57(4): 60-65.
[2] 孔源, 张海鸥, 高建成, 陈曦, 王桂兰. 金属激光熔化沉积过程双时间步长法多尺度物理耦合场的数值模拟*[J]. 真空, 2020, 57(4): 77-84.
[3] 赵宇辉, 赵吉宾, 王志国, 王福雨. Inconel 625镍基高温合金激光增材制造内应力控制方式研究*[J]. 真空, 2020, 57(3): 73-79.
[4] 邓文宇, 段永利, 齐丽君, 孙宝玉. 单侧涡旋干式真空泵内气体流动的CFD模拟[J]. 真空, 2019, 56(4): 53-58.
[5] 李 琳 , 李成明 , 杨功寿 , 胡西多 , 杨少延 , 苏 宁 . 三层热壁金属有机化学气相外延流场计算机模拟[J]. 真空, 2019, 56(1): 34-38.
[6] 王晓冬, 吴虹阅, 张光利, 李 赫, 孙 浩, 董敬亮, TU Jiyuan. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1 -5 .
[2] 李福送, 王文军, 林伟健, 潘亚娟. 智能化螺杆空压机性能检测系统的总体设计*[J]. 真空, 2021, 58(1): 19 -22 .
[3] 杨乃恒. 关于真空除气使用的真空泵情况分析与讨论[J]. 真空, 2021, 58(1): 29 -32 .
[4] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15 -18 .
[5] 张世伟, 孙坤, 韩峰. 螺杆真空泵设计的常见问题分析[J]. 真空, 2021, 58(1): 23 -28 .
[6] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2020, 57(6): 84 -86 .
[7] 柴昊, 贾军伟, 王斌, 李鹏, 崔爽, 冯旭, 李伟, 刘展, 李绍飞, 陈权. 紧凑型微波ECR等离子体源的设计及其特性研究[J]. 真空, 2021, 58(1): 6 -9 .
[8] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10 -14 .
[9] 蔡潇, 曹曾, 张炜, 李瑞鋆, 黄勇. HL-2M装置真空室预抽气系统的研制*[J]. 真空, 2021, 58(1): 33 -37 .
[10] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72 -77 .