欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (3): 12-17.doi: 10.13385/j.cnki.vacuum.2023.03.03

• 薄膜 • 上一篇    下一篇

真空镀膜助力低碳制造与可持续发展*

孙彬1, 刘兴龙2,3, 徐乘远2,4, 王庆2, 蔺增2,5   

  1. 1.泰山科学技术研究院,山东 泰安 271000;
    2.东北大学机械工程与自动化学院,辽宁 沈阳 110819;
    3.泰安东大新材表面技术有限公司,山东 泰安 271024;
    4.泰安市真空表面工程产业技术研究院,山东 泰安 271024;
    5.沈阳市真空镀膜工程技术研究中心,辽宁 沈阳 110819
  • 收稿日期:2022-10-10 出版日期:2023-05-25 发布日期:2023-05-30
  • 通讯作者: 蔺增,教授,博导。
  • 作者简介:孙彬(1987-),男,山东泰安人,本科,助理研究员。
  • 基金资助:
    *中央引导地方科技发展专项资金(YDZX20193700002940)

Vacuum Coating Helps Low-carbon Manufacturing and Sustainable Development

SUN Bin1, LIU Xing-long2,3, XU Cheng-yuan2,4, WANG Qing2, LIN Zeng2,5   

  1. 1. Tai Shan Institute of Science and Technology, Tai′an 271000, China;
    2. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
    3. NeuMat (Tai′an) Surface Technology Limited, Tai′an 271024, China;
    4. Tai′an Industrial Technology Research Institute of Vacuum Surface Engineering, Tai′an 271024, China;
    5. Research Center of Vacuum Coating Technology of Shenyang, Shenyang 110819, China
  • Received:2022-10-10 Online:2023-05-25 Published:2023-05-30

摘要: 真空镀膜是一种在真空环境下制备高性能涂层材料和高质量表面的绿色制造技术。目前广泛应用的物理气相沉积技术制备的硬质涂层系列产品,能够助力制造业实现低碳制造和可持续发展。在真空镀膜实际应用过程中,摩擦学与表面界面是需要重点研究的科学性问题。高端真空镀膜设备的开发需要解决核心零部件、先进镀膜工艺及控制系统等技术难题,特别是要主动融入第四次工业革命的浪潮中,探索数字化变革之路。本文介绍了真空镀膜助力低碳制造和可持续发展的具体路径,除了工模具行业和汽车行业等成熟市场,真空镀膜对医疗行业、航空航天和半导体行业的创新发展亦可提供重要的支撑。

关键词: 真空镀膜, 低碳制造, 可持续发展, 数字化

Abstract: Vacuum coating is a green manufacturing technology which can prepare high performance coating material and high quality surface under vacuum environment. At present, the hard coating series products which is majorly prepared by physical vapor deposition technology can help the manufacturing industry to achieve low-carbon manufacturing and sustainable development. In the process of vacuum coating application, tribology and surface interface are important scientific issues, while key technical problems need to be solved for advanced vacuum coating equipment, such as high-end core parts, coating process and control system, in particular to the initiative into the fourth tide of the industrial revolution as well as exploring the road of the digital revolution. This paper introduces the specific path of vacuum coating to help low-carbon manufacturing and sustainable development. In addition to mature markets such as tool industry and automobile industry, vacuum coating can also provide important support for the innovation and development of medical industry, aerospace and semiconductor industry.

Key words: vacuum coating technology, low carbon manufacturing, sustainable development, digitalization

中图分类号:  TB43

[1] BOBZIN K, BRGELMANN T, KALSCHEUER C. Arc PVD(Cr,Al,Mo)N and(Cr,Al,Cu)N coatings for mobility applications[J]. Surface & Coatings Technology, 2020, 384: 125046.
[2] 李晨. 涂层刀具钻削TC4钛合金的服役行为研究[D]. 沈阳: 东北大学, 2022.
[3] KRASSNITZER S, HAGMANN J, GSTOEHL O. Modifiable magnet configuration for arc vaporization sources: US20200176220A1[P].2020-06-04.
[4] 毕诗博. 磁控溅射阴极磁场对靶材刻蚀过程控制的研究[D]. 沈阳: 东北大学, 2021.
[5] 乔宏. 阴极电弧源磁场特性对大颗粒和靶材利用率的影响规律研究[D]. 沈阳: 东北大学, 2019.
[6] CHAAR A B B, SYED B, HSU T W, et al. The Effect of cathodic arc guiding magnetic field on the growth of(Ti0.36Al0.64)N coatings[J]. Coatings, 2019, 9: 660-673.
[7] VETTER J.60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types,and their evolution for industrial applications[J]. Surface & Coatings Technology, 2014, 257: 213-240.
[8] LEE Y, KIM C, HONG S J.Industrial internet of things for condition monitoring and diagnosis of dry vacuum pumps in atomic layer deposition equipment[J]. Electronics, 2022, 11: 375-392.
[9] BAN L, ZIARANI A K, CETINKAYA C.Acoustic monitoring of nonuniformly eroded PVD targets[J]. IEEE Transactions on Semiconductor Manufacturing, 2006, 19(4): 425-431.
[10] 王福贞. “热处理技术”和“真空镀膜技术”在走向融合[J]. 真空, 2020, 57(5): 1-6.
[11] SUN F, LIU X L, LUO S Q, et al.Duplex treatment of arc plasma nitriding and PVD TiN coating applied to dental implant screws[J]. Surface & Coatings Technology, 2022: 439: 128449-128458.
[12] SUN F, CHENG W, ZHAO B H, et al.Evaluation the loosening of abutment screws in fluid contamination: an in vitro study[J]. Scientific Reports, 2022, 12: 10797-10807.
[13] 魏荣华, 李灿民. 美国西南研究院等离子全方位离子镀膜技术研究及实际应用[J]. 中国表面工程, 2012, 25(1): 1-10.
[14] LEONTIEV S A, KUZNETSOV V G, RYBNIKOV A I, et al. Structure and properties of protective coatings produced by vacuum arc deposition[J]. Surface & Coatings Technology, 1995, 76/77: 41-46.
[15] EIZNER B A, MARKOV G V, MINERICH A A.Deposition stages and applications of CAE multicomponent coatings[J]. Surface & Coatings Technology, 1996, 79: 178-191.
[16] KNOTEK O, LUGSCHEIDER E, LÖFFLER F, et al. Arc evaporation of multicomponent MCrAlY cathodes[J]. Surface & Coatings Technology, 1995, 74/75: 118-122.
[17] WANG B, HUANG R F, SONG G H, et al.Interdiffusion behavior of Ni-Cr-Al-Y coatings deposited by arc-ion plating[J]. Oxidation of Metals, 2001, 56: 1-13.
[18] SANDERS D M, ANDERS A. Review of cathodic arc deposition technology at the start of the new millennium[J]. Surface & Coatings Technology, 2000, 133/134: 78-90.
[19] SIEMROTH P, WENZEL C, KLIMES W, et al. Metallization of sub-micron trenches and vias with high aspect ratio[J]. Thin Solid Films, 1997, 308/309: 455-459.
[20] NICHOLS C A, ROSSNAGEL S M, HAMAGUCHI S.Ionized physical vapor deposition of Cu for high aspect ratio damascene trench fill applications[J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 1996, 14(5): 3270-3275.
[21] KIM Y, KWON H, PARK H, et al.Correlation of plasma erosion resistance and the microstructure of YF3 coatings prepared by vacuum kinetic spray[J]. Journal of Thermal Spray Technology, 2020, 29: 1016-1026.
[22] POHLER M, FRANZ R, RAMM J, et al.Influence of pulsed bias duty cycle variations on structural and mechanical properties of arc evaporated(Al,Cr)2O3 coatings[J]. Surface & Coatings Technology, 2015, 282: 43-51.
[23] BARTOSIK M, ARNDT M, RACHBAUER R, et al.Cross-sectional X-ray nano-diffraction and-reflectivity analysis of multilayered AlTiN-TiSiN thin films: correlation between residual strain and bi-layer period[J]. Scripta Materialia, 2015, 107: 153-156.
[24] 谭飞, 林松盛, 石倩, 等. 电弧离子镀制备 NiCrAlY 涂层及其抗高温氧化性能[J]. 真空, 2020, 57(5): 7-10.
[1] 邓文宇, 王朋阳, 齐丽君, 段永利, 孙宝玉, 万亿, 张昕洁, 谢元华,杜广煜,刘坤. 钕铁硼永磁材料腐蚀机理及防护研究进展*[J]. 真空, 2020, 57(5): 45-51.
[2] 王福贞. “热处理技术”和 “真空镀膜技术”在走向融合[J]. 真空, 2020, 57(5): 1-6.
[3] 张粉利, 邓敬莲, 王杰峰, 孟庆远. 钢管镀膜前处理清洗工艺的研究[J]. 真空, 2018, 55(6): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .