欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (2): 1-9.doi: 10.13385/j.cnki.vacuum.2024.02.01

• 薄膜 •    下一篇

多元稀土掺杂YSZ热障涂层的热物理和热循环性能研究*

黄光宏, 甄真, 王鑫, 牟仁德, 何利民, 许振华   

  1. 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室,北京 100095
  • 收稿日期:2023-08-11 出版日期:2024-03-25 发布日期:2024-03-28
  • 通讯作者: 许振华,研究员。
  • 作者简介:黄光宏(1978-),男,云南省丽江市人,硕士,高级工程师。
  • 基金资助:
    *国家科技重大专项(J2019-VII-0010-0150)

Thermophysical and Thermal Cycling Properties of Multi-element Rare Earth Doped YSZ Thermal Barrier Coatings

HUANG Guang-hong, ZHEN Zhen, WANG Xin, MU Ren-de, HE Li-min, XU Zhen-hua   

  1. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2023-08-11 Online:2024-03-25 Published:2024-03-28

摘要: 4.5wt.%Gd2O3-5.5wt.%Yb2O3-10.5wt.%Y2O3-79.5wt.%ZrO2(GdYbYSZ)稀土复合氧化物陶瓷是一类适用于更高温度下潜在应用的新型热障涂层(TBCs)材料。采用高温固相合成法制备了GdYbYSZ陶瓷粉体和陶瓷块材,在1 100 ℃和1 300 ℃煅烧不同时间后GdYbYSZ陶瓷粉末无相变,具有非常优异的高温相稳定性。在1 200 ℃时,GdYbYSZ陶瓷块材的平均热扩散系数和平均热导率分别比同等温度下YSZ陶瓷块材降低了2.1%和5.1%。采用电子束物理气相沉积(EB-PVD)工艺在单晶合金(Ni,Pt)Al粘结层表面制备了GdYbYSZ新型热障涂层。沉积态GdYbYSZ陶瓷涂层的主相结构为立方相,有少量游离态Y2O3和ZrO2共存,其Y和Zr元素的相对含量均比靶材中的高,而Gd和Yb元素含量相当。经1 100 ℃长期冷热交替循环后,GdYbYSZ陶瓷层表面出现大量规则分布的“泥巴状”微观裂纹,陶瓷层内滋长的横向裂纹已经扩展到陶瓷层与TGO层的界面处,并引起该界面退化分离。陶瓷涂层的剥落位置主要出现在TGO层上下两个临域的界面处。TGO层严重的褶皱、波动起伏、扭曲交联、凸面尖端应力积聚和快速松弛是引起GdYbYSZ/(Ni,Pt)Al热障涂层体系层间界面分离和剥落失效的关键性因素。

关键词: 电子束物理气相沉积, 热障涂层, 热物理, 热循环, 剥落失效

Abstract: The rare earth oxide ceramic designed as 4.5wt.%Gd2O3-5.5wt.%Yb2O3-10.5wt.%Y2O3-79.5wt.%ZrO2 (GdYbYSZ) is a candidate material for thermal barrier coatings (TBCs), which will be suitable for application at higher temperatures. GdYbYSZ ceramic powders and bulks are fabricated by solid-state synthesis at temperatures above 1 300 ℃, and the powders have no phase transformation and exhibit excellent thermal stability despite long-term calcination at 1 100 ℃和1 300 ℃. The averaged thermal diffusivity and thermal conductivity of GdYbYSZ ceramics are approximately 2.1% and 5.1% lower than those of the conventional YSZ bulk respectively. The GdYbYSZ ceramic coatings are directly manufactured on the surface of (Ni, Pt)Al bond coat by means of electron beam physical vapor deposition (EB-PVD), whose phase structure consists primarily of cubic phase with co-existing of excess Y2O3 and ZrO2. Meanwhile, elemental compositions of Y and Zr within as-deposited ceramic topcoats are higher than those in the ingot, and the constituents of Gd and Yb elements in these two types of specimens tend to be similar. A large number of regularly distributed “mud-like” microcracks appear on the surface of GdYbYSZ ceramic coating after the long-term alternating thermal cycling at 1 100 ℃. The transverse microcracks originating in the ceramic topcoat have elongated to the interface of ceramic coating and TGO layer that further cause the degeneration and separation of the interface. The spalling location of the GdYbYSZ ceramic coating mainly occurs at the upper and lower adjacent interfaces of the TGO layer. The serious rumpling, undulation, cross-linking, stress accumulation and rapid relaxation at the convex tip exist in the TGO layer are the critical factors to accelerating interfacial delamination and spallation failure of GdYbYSZ/(Ni, Pt)Al TBCs.

Key words: electron beam physical vapor deposition, thermal barrier coating, thermophysical, thermal cycling, spallation failure

中图分类号:  TB321;TB43

[1] 白明远, 王鑫, 甄真, 等. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究[J]. 真空, 2021, 58(4): 12-20.
[2] 戴建伟, 牟仁德, 何利民, 等. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29.
[3] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1): 1-6.
[4] LIU Y, ZHEN Z, WANG X, et al.Thermo-physical properties, morphology and thermal shock behavior of EB-PVD thermal barrier coating with DLC YbGdZrO/YSZ system[J]. Materials Today Communications, 2023, 35: 106265.
[5] 常振东, 张婧, 牟仁德, 等. NiCrAlYSi粘结层合金相结构与性能研究[J]. 真空, 2022, 59(4): 41-47.
[6] CAO X Q.Application of rare earths in thermal barrier coating materials[J]. Journal of Materials Science & Technology, 2007, 23: 15-35.
[7] ZHEN Z, WANG X, SHEN Z Y, et al.Phase stability, thermo-physical property and thermal cycling durability of Yb2O3 doped Gd2Zr2O7 novel thermal barrier coatings[J]. Ceramics International, 2022, 48(2): 2585-2594.
[8] DAI J W, HUANG B, HE L M, et al.Thermal cycling behavior and failure mechanism of Yb2O3-doped yttria-stabilized zirconia thermal barrier coatings[J]. Materials Today Communications, 2023, 34: 105409.
[9] ZHEN Z, WANG X, SHEN Z Y, et al.Thermal cycling behavior of EB-PVD rare earth oxides co-doping ZrO2-based thermal barrier coatings[J]. Ceramics International, 2021, 47(16): 23101-23109.
[10] 李嘉, 谢铮, 何箐, 等. Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料的热物理性能[J]. 表面技术, 2015(9): 18-22.
[11] 赵鹏森, 曹新鹏, 郑海忠, 等. 稀土掺杂热障涂层的研究进展[J]. 航空材料学报, 2021, 41(4): 83-95.
[12] 王鹏程, 赵运才, 刘明, 等. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[13] 薛召露, 郭洪波, 宫声凯, 等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报, 2018, 38(2): 10-20.
[14] WANG X, ZHEN Z, LI N, et al.Electron beam physical vapor deposited YbGYZ thermal barrier coatings: phase stability, thermo-physical properties and thermal shock behavior[J]. Open Ceramics, 2022, 11: 100287.
[15] GUO L, GUO H B, GONG S K, et al.Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceramics International, 2013, 39(8): 9009-9015.
[16] SWALIN R A.Thermdynamics of solids[M]. 2ed. New York: John Wiley & Sons, 1972: 53-87.
[17] SCHLICHTING K W, PASTURE N P, KLEMENS P G.Thermal conductivity of dense and porous yttria-stabilized zirconia[J]. Journal of Materials Science, 2001, 36: 3003-3010.
[18] SHEN Z Y, LIU G X, MU R D, et al.Effects of Er stabilization on thermal property and failure behavior of Gd2Zr2O7 thermal barrier coatings[J]. Corrosion Science, 2021, 185: 109418.
[19] 谢敏, 张永和, 周芬, 等. Y2O3掺杂对La2Zr2O7陶瓷结构与热物理性能的影响[J]. 硅酸盐学报, 2016, 44(9): 1352-1356.
[20] 桑玮玮, 张红松, 陈华辉, 等. (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7高熵陶瓷的制备及热物理性能[J]. 无机材料学报,2021, 36(4): 405-410.
[21] ZHANG Y L, GUO L, YANG Y P, et al.Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics, 2012, 25(6): 948-953.
[22] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732.
[23] MUNAWAR A U, SCHULZ U, CERRI G, et al.Microstructure and cyclic lifetime of Gd and Dy-containing EB-PVD TBCs deposited as single and double-layer on various bond coats[J]. Surface & Coatings Technology, 2014, 245: 92-101.
[24] LIU H, XU M M, LI S, et al.Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinummodified aluminide coating[J]. Journal of Materials Science & Technology, 2020, 54: 132-143.
[25] MORA-GARCIA A G, RUIZ-LUNA H, ALVARADO-OROZCO J M, et al. Microstructural analysis after furnace cyclic testing of pre-oxidized ReneN5/(Ni,Pt)Al/7YSZ thermal barrier coatings[J]. Surface & Coatings Technology, 2020, 403: 126376.
[26] CAO X Q, VASSEN R, WANG J S, et al.Degradation of zirconia in moisture[J]. Corrosion Science, 2020, 176: 109038.
[27] GELL M, VAIDYANATHAN K, BARBER B, et al.Mechanism of spallation in platinum aluminide/electron beam physical vapour-deposited thermal barrier coatings[J]. Metallurgical and Materials Transactions A,1999, 30: 427-435.
[28] WANG X, ZHEN Z, HUANG G H, et al.Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat[J]. Journal of Alloys & Compounds, 2021, 873: 159720.
[1] 张彬, 蔡妍, 张涛, 常振东, 曾令玉, 牟仁德. 沉积入射角度对热障涂层形貌和性能的影响*[J]. 真空, 2023, 60(3): 5-11.
[2] 邓仲华, 常振东, 徐雷, 胡江玮, 蔡妍, 牟仁德. 物理气相沉积热障涂层批量生产用球坑仪快速测厚法研究*[J]. 真空, 2022, 59(6): 73-77.
[3] 王立哲, 蔡妍, 张儒静, 何利民, 牟仁德. 单晶高温合金CVD铝化物涂层对热障涂层高温防护性能的影响*[J]. 真空, 2022, 59(4): 56-63.
[4] 杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳. 微米级裂纹对水冷无氧铜坩埚的影响*[J]. 真空, 2021, 58(4): 81-86.
[5] 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20.
[6] 戴建伟, 牟仁德, 何利民, 杨文慧, 刘德林, 许振华. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29.
[7] 李国浩, 巴德纯, 王栋, 陈红斌, 张洪琦, 杜广煜. EB-PVD制备YSZ涂层的热震性研究*[J]. 真空, 2020, 57(3): 1-4.
[8] 翟睿琼, 任国华, 田东波, 李 宇, 杨艳斌, 刘 宠. 低轨道紫外、带电粒子、热循环与原子氧协合效应研究进展[J]. 真空, 2019, 56(1): 72-76.
[9] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .