欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (3): 5-11.doi: 10.13385/j.cnki.vacuum.2023.03.02

• 薄膜 • 上一篇    下一篇

沉积入射角度对热障涂层形貌和性能的影响*

张彬1, 蔡妍1, 张涛2, 常振东1, 曾令玉2, 牟仁德1   

  1. 1.中国航发北京航空材料研究院,北京 100095;
    2.中国航发沈阳发动机研究所,辽宁 沈阳 110015
  • 收稿日期:2022-12-26 出版日期:2023-05-25 发布日期:2023-05-30
  • 通讯作者: 蔡妍,博士,研究员。
  • 作者简介:张彬(1994-),男,河北省沧州市人,硕士,工程师。
  • 基金资助:
    *国家科技重大专项(J2019-VI-0002-0115)

Effect of Incident Angle under Deposition on the Morphology and Properties of Thermal Barrier Coatings

ZHANG Bin1, CAI Yan1, ZHANG Tao2, CHANG Zhen-dong1, ZENG Ling-yu2, MU Ren-de1   

  1. 1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    2. AECC Shenyang Aero Engine Research Institute, Shenyang 110015, China
  • Received:2022-12-26 Online:2023-05-25 Published:2023-05-30
  • Supported by:
    National Science and Technology Major Project(J2019-VI-0002-0115)

摘要: 采用真空电弧镀(ARC)技术在DZ125合金基体上制备NiCrAlYSi(HY3)金属粘结层,然后采用电子束物理气相沉积(EB-PVD)技术,分别以0°、20°、40°、60°和80°五种入射角度沉积氧化钇稳定氧化锆(6~8YSZ)陶瓷涂层,研究了入射角度对涂层形貌和性能的影响。结果表明:五种入射角度的热障涂层均能形成柱状晶结构,随着入射角度增加,孔隙率和柱状晶倾斜角度均逐渐增加,涂层厚度逐渐减小;对带涂层试样进行结合强度测试,入射角度0°~40°时涂层的结合强度均在55MPa以上,入射角度增加到80°时,结合强度降低到15.7MPa;热冲击条件下,陶瓷面层和基体之间形成TGO,由于不同入射角度下涂层孔隙率不同,TGO生长速度不一致,导致其热冲击寿命存在明显差异,入射角度为0°~40°时涂层的热冲击寿命均超过4000次,入射角度为60°时涂层的热冲击寿命为3371次,入射角度为80°时涂层的热冲击寿命最短,仅为1836次。

关键词: 入射角度, 电子束物理气相沉积, 热障涂层, 结合强度, 热冲击试验

Abstract: The NiCrAlYSi (HY3) metal-bonded layer was prepared on the DZ125 alloy substrate by vacuum arc plating (ARC), and then the yttrium oxide stabilized zirconia(6-8YSZ) ceramic coatings were deposited by electron beam physical vapor deposition(EB-PVD) at five incidence angles of 0°, 20°, 40°, 60°, and 80°, respectively. The effect of incident angle on the morphology and properties of the coating was studied. The results show that the thermal barrier coatings with five incidence angles can form columnar crystal structure, and the porosity and columnar crystal tilt angle gradually increase with increasing incidence angles, while the coating thickness gradually decreases. The bonding strength of the coated specimens was tested, and the bonding strength is above 55MPa at the incidence angles of 0° to 40°, and decreases to 15.7MPa when the incidence angle increasing to 80°. Under the thermal shock conditions, TGO is formed between the ceramic surface layer and the substrate.The porosity of the coating is different at different incidence angles, and the growth rate of TGO is inconsistent, resulting in significant differences in the thermal shock life. The thermal shock life of the coating at the incidence angles of 0° to 40° exceeds 4000 times, while that of the coating at the incidence angle of 60° is 3371 times and the shortest one at the incidence angle of 80° is only 1836 times.

Key words: incidence angle, electron beam physical vapor deposition, thermal barrier coating, bonding strength, thermal shock test

中图分类号:  TG174.4

[1] CLARKE D R, LEVI C G.Materialsdesign for then extgeneration thermal barrier coatings[J]. Annual Review of Materials Research, 2003, 33: 383-417.
[2] 袁佟, 邓畅光, 毛杰, 等. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[3] BLANCHARD F, KADI M J, BOUSSER E, et al.Effect of thermal ageing on the optical properties and pore structure of thermal barrier coatings[J]. Surface & Coatings Technology, 2023, 452: 129080.
[4] SONG J B, WANG L S, DONG H, et al.Long lifespan thermal barrier coatings overview: materials, manufacturing, failure mechanisms, and multiscale structural design[J]. Ceramics International, 2023, 49(1): 1-23.
[5] KADAM N R, KARTHIKEYAN G,KULKARNI D M, et al.The effect of spray angle on the microstructural and mechanical properties of plasma sprayed 8YSZ thermal barrier coatings[J]. Journal of Micromanufacturing, 2022, 5(2): 181-192.
[6] 张鹏飞, 李建平, 蔡妍, 等. DZ125合金真空电弧镀沉积复合涂层技术[J].航空材料学报, 2020, 40(2): 22-27.
[7] 郭洪波,宫声凯,徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10): 2722-2732.
[8] CHEN W R, WU X, PATNAIK P C, et al.TGO growth behaviour in TBCs with APS and HVOF bond coats[J]. Surface & Coatings Technology, 2007, 202(12): 2677-2683.
[9] BAI Y, DING C H, LI H Q, et al.Isothermal oxidation behavior of supersonic atmospheric plasma-sprayed thermal barrier coating system[J]. Journal of Thermal Spray Technology, 2013, 22(7): 1201-1209.
[10] AN G S, LI W S, FENG L, et al.Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramic-layer thermal barrier coatings[J]. Ceramics International, 2021, 47(17): 24320-24330.
[11] 李帅, 底月兰, 王海斗, 等. 热障涂层TGO界面应力分布及裂纹扩展行为的研究进展[J]. 表面技术, 2021, 50(6): 138-147.
[12] 刘林涛, 张勇, 吕海兵, 等. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(增刊1): 160-163.
[13] JONES R L, MESS D.Improved tetragonal phase stability at1400℃ with scandia,yttria-stabilized zirconia[J]. Surface & Coatings Technology, 1996, 86/87: 94-101.
[14] SZYMANSKI K, GORAL M, KUBASZEK T, et al.Microstructure of TBC coatings deposited by HVAF and PS-PVD methods[J]. Solid State Phenomena, 2015, 227: 373-376.
[15] CHEN Q Y, LI C X, ZHAO J Z, et al.Microstructure of YSZ coatings deposited by PS-PVD using 45kW shrouded plasma torch[J]. Materials and Manufacturing Processes, 2015, 31(9): 1183-1191.
[16] DANIEL K, FENG C, GAO S.Application of multispectral radiation thermometry in temperature measurement of thermal barrier coated surfaces[J]. Measurement, 2016, 92: 218-223.
[17] LANCE M J, HAYNES J A, PINT B A.Pint. The effects of temperature and substrate curvature on TBC lifetime and residual stress in alumina scales beneath APS YSZ[J]. Surface & Coatings Technology, 2016, 308: 19-23.
[18] OSORIO J D, HERNÁNDEZ-ORTIZ J P, TORO A. Microstructure characterization of thermal barrier coating systems after controlled exposure to a high temperature[J]. Ceramics International, 2014, 40(3): 4663-4671.
[19] SONG H, KIM Y, KOO J M, et al.Durability evaluation of thermal barrier coating (TBC) at high temperature[J]. Applied Mechanics and Materials, 2013, 467: 41-46.
[20] SARUHAN B, RYUKHTIN V, KELM K.Correlation of thermal conductivity changes with anisotropic nano-pores of EB-PVD deposited FYSZ-coatings[J]. Surface & Coatings Technology, 2011, 205(23/24): 5369-5378.
[21] ZHAO H B, YU F L, BENNETT T D, et al.Morphology and thermal conductivity of yttria-stabilized zirconia coatings[J]. Acta Materialia, 2006, 54(19): 5195-5207.
[22] NIEUWENHUIZEN J M, HAANSTRA H B.Microfractography of thin films[J]. Philips Technology, 1966, 27: 87-91.
[23] WADA K, YOSHIYA M, YAMAGUCHI N, et al.Texture and microstructure of ZrO2-4mol% Y2O3 layers obliquely deposited by EB-PVD[J]. Surface & Coatings Technology, 2006, 200: 2725-2730.
[24] TAIT R N, SMY T, BRETTA M J.Modelling and characterization of columnar growth in evaporated films[J]. Thin Solid Films, 1993, 226: 196-201.
[25] LICHTER S, CHEN J.Model for columnar microstructure of thin solid films[J]. Physical Review Letters, 1986, 56(13): 1396-1399.
[26] BERNIER J S, LEVAN G, MANIRUZZAMAN M, et al. Crystallographic texture of EB-PVD TBCs deposited on stationary flat Surfaces in a multiple ingot coating chamber as a function of chamber position[J]. Surface & Coatings Technology, 2003, 163/164: 95-99.
[27] CHEN W R, WU X, MARPLE B R, et al.TGO growth behavior in TBCs with APS and HVOF bond coats[J]. Surface & Coatings Technology[J], 2008, 202(12): 2677-2683.
[28] 薛文利, 陆涛, 黄佳华,等. NiCrAlY+YSZ热障涂层循环氧化过程中的TGO增厚及失效行为[J]. 稀有金属材料与工程, 2022, 51(7): 2667-2672.
[29] 陈亚军. 热障涂层热生长氧化物形成及生长过程的干预与控制研究[D]. 天津: 天津大学, 2010.
[1] 邓仲华, 常振东, 徐雷, 胡江玮, 蔡妍, 牟仁德. 物理气相沉积热障涂层批量生产用球坑仪快速测厚法研究*[J]. 真空, 2022, 59(6): 73-77.
[2] 王立哲, 蔡妍, 张儒静, 何利民, 牟仁德. 单晶高温合金CVD铝化物涂层对热障涂层高温防护性能的影响*[J]. 真空, 2022, 59(4): 56-63.
[3] 胡天时, 田修波, 刘向力, 巩春志. 入射能量对外延生长Cr薄膜表面粗糙度和膜基结合强度的影响:分子动力学模拟*[J]. 真空, 2022, 59(3): 35-40.
[4] 孟超, 岳守晶, 轩立新, 薛洪明, 高震, 王新超. 等离子体处理对氰酸酯基复合材料表面性能影响研究*[J]. 真空, 2022, 59(2): 6-10.
[5] 宋光辉, 李文龙, 王银河, 胡雯雯, 姚春龙, 刘海涛. 宽角度入射近紫外反射镜的膜系优化设计与制备[J]. 真空, 2021, 58(6): 38-42.
[6] 贺平, 张旭, 杨洋. 不同基体材料筒体内壁磁控溅射膜层工艺研究[J]. 真空, 2021, 58(6): 33-37.
[7] 杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳. 微米级裂纹对水冷无氧铜坩埚的影响*[J]. 真空, 2021, 58(4): 81-86.
[8] 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20.
[9] 戴建伟, 牟仁德, 何利民, 杨文慧, 刘德林, 许振华. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29.
[10] 李国浩, 巴德纯, 王栋, 陈红斌, 张洪琦, 杜广煜. EB-PVD制备YSZ涂层的热震性研究*[J]. 真空, 2020, 57(3): 1-4.
[11] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .