欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (4): 54-59.doi: 10.13385/j.cnki.vacuum.2020.04.12

• Measurement and Control • Previous Articles     Next Articles

Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster

ZHAO Jie1,2, XV Li1,2, LI Jian1,2, WANG Kun1,2, WANG Shi-qing1   

  1. 1. The Engineering and Technical College, Chengdu University of Technology, Leshan 614007, China;
    2. Southwestern Institute, Physics, Chengdu 610041, China
  • Received:2019-07-22 Online:2020-07-25 Published:2020-07-23

Abstract: In order to study the discharge process and plasma distribution in Hall thruster channel, a two-dimensional simulation model of Hall thruster was established. The number density and velocity distribution of the Xe+ and Xe++, current density distribution, potential distribution and electron temperature distribution in the thruster channel were obtained. The discharge process in the thruster was observed from the change of number density distribution of the Xe+ and Xe++ at different time. The results show that the specific impulse is about 1300S when the discharge is 1300V and 4. 2A, and the gas flow rate is 42SCCM. The results are in good agreement with the experimental and numerical results reported in the literature. On the one hand, the validity of the model in numerical simulation of Hall thruster is verified. On the other hand, the detailed discharge plasma parameters in the steady Hall thruster is obtained.

Key words: plasma, thruster, numerical simulation, specific impulse

CLC Number: 

  • V439
[1] Zhurin V V, Kaufman H R, Robinson R S.Physics of closed drift thrusters[J]. Plasma Source Sci. Technol, 1999, 8: R1-R20.
[2] Kaufman H R.Technology of closed-drift thrusters[J]. AIAA Journal, 1985, 23: 78-87.
[3] 康小录, 杭观荣, 朱智春. 霍尔电推进器的发展与应用[J]. 火箭推进, 2017, 43(1):8-37.
[4] 夏广庆, 孙安邦, 朱国强, 等. 法国等离子体推进技术的研究与发展[J]. 导弹与航天运载技术, 2010, 305(1): 52-56.
[5] 刘佳, 康小录, 张岩, 等. 基于核电的大功率霍尔电推进系统设计及分析[J]. 原子能科学技术, 2019, 53(1): 9-15.
[6] Morozov A I, Savelev V V.One-dimensional hydrodynamic model of the atom and ion dynamics in a stationary plasma thruster[J]. Plasma physics reports, 2000, 26(3): 219-224.
[7] Subrata R, Pandey B P.Development of a finite element-based Hall-thruster model[J]. Journal of Propusion and power, 2003, 19(5): 964-971.
[8] Magelaar G J, Bareilles J, Garrigues L, et al.Two-dimensional model of a stationary plasma thruster[J]. Journal of Applied Physics, 2002, 91(9): 5592-5598.
[9] Han K, Wei L Q, Ji Y C, et al.Effects of a new buffer magnetic circuit on preionization and discharge in a P70 Hall thruster[J]. Journal of Propulsion Technology, 2008, 32(6): 823-827.
[10] Liu H, Wu B Y, P. E, and P. Duan, “Preionization of buffer chamber in ATON Hall thruster, ” Acta Physica Sinica, 2010, 59(10): 7203-7208.
[11] Yu D R, Wei L Q, Zhao Z Y, et al.Effect of preionization in Aton-type Hall thruster on low frequency oscillation[J]. Phys. Plasmas, 2008, 15(4): 43502-6.
[12] Morozov A I, Esipchuck Y V, Kapulkin A M, et al.Effect of the magnetic field a closed-electron-drift accelerator[J]. Soviet Physics Technical Physics, 1972, 17: 482.
[13] Tang D L, Wang L S, Pu S H, et al.Characteristics of end Hall ion source with magnetron hollow cathod discharge[J]. Nuclear Instrunents and Mehtods in Physics Research, 2007, 257: 796-800.
[14] Tang D L, Zhao J, Wang L S, et al.Effects of magnetic field gradient on ion beam current in cylindrical Hall ion source[J]. Journal of Applied Physics, 123305(102): 1-3.
[15] Roy S, Pandey B P.Numerical investigation of a Hall thruster plasma[J]. Physics of Plamsma. 2002, 9(9): 4052-4060.
[16] Barral S.Numerical studies of Hall thrusters based on fluid equations for plasma[D]. Warszawa: Instytut Podstawowych Problemów Techniki Polska Akademia Nauk, 2003.
[17] Yu D R, Wei L Q, Zhao Z K, et al.Effect of preionization in Aton-type Hall thruster on low frequency oscillation[J]. Phys. Plasmas, 2008, 15(4): 1-6.
[18] Liu H, Wu B Y, Duan P E P. Preionization of buffer chamber in ATON Hall thruster[J]. Acta Physica Sinica, 2010, 59(10): 7203-7208.
[1] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[2] WANG Xiao-ming, E Dong-mei, WU Jun-sheng, ZHANG Xu-yue, ZHOU Yan-wen. Simulation of MagnetronSputtering Enhancement Based on Plasma [J]. VACUUM, 2020, 57(3): 5-6.
[3] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[4] YANG Bo, LAI You-bin, WANG Dong-yang, LI Xiang, WU Hai-long, SUN Ming-han,YUAN Ren-yue, SUN Shi-jie. Study on Surface Hardness of Plasma Cladding Layer for High Chromium Iron-Based Alloy [J]. VACUUM, 2020, 57(1): 88-93.
[5] WANG Dong-yang, LAI You-bin, YANG Bo, LI Xiang, WU Hai-long, SUN Ming-han, YUAN Ren-yue, SUN Shi-jie. Influence of Process Parameter on the Residual Stress of Multi-Track Overlapping Plasma Cladding [J]. VACUUM, 2019, 56(6): 80-84.
[6] ВВ.А.ШАПОВАЛОВ, XU Xiao-hai, WANG Yuan, SUN Zu-lai, SONG Qing-zhu, LI Jian-jun. Application of Plasma Technology in Smelting and Foundry Production [J]. VACUUM, 2019, 56(5): 1-5.
[7] FAN Qi-peng, HU Yu-lian, LIU Bo-wen, TIAN Xu, JIANG De-rong, LIU Zhong-wei. Deposition of Cobalt Carbide Films by Plasma Enhanced Atomic Layer Deposition [J]. VACUUM, 2019, 56(5): 56-60.
[8] ZHAO Jie, TANG De-li, LI Ping-chuan, GENG Shao-fei. Effect of Anode Segmented Form on Ion Beam Distribution of Anode Layer Hall Thruster [J]. VACUUM, 2019, 56(4): 1-5.
[9] ZHANG Zi-xin, LIU Zhong-wei, YANG Li-zhen, CHEN Qiang. Study on Performance of Silicon-Based Nitride Phosphors Coated by Plasma-Assisted Atomic Layer Deposition [J]. VACUUM, 2019, 56(4): 19-23.
[10] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[11] LI Yang, TONG Pu-chao, LI Jun-ren, ZHU Jun-li, ZHANG Zhuo-zhuo, CAO Yi-ke. Improvement and Optimization of Welding Gun for Vacuum Plasma Welding Chamber [J]. VACUUM, 2019, 56(4): 71-73.
[12] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[13] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[14] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
[15] RAN Biao, LI Liu-he. The development and application of anode layer ion source [J]. VACUUM, 2018, 55(5): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .