欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (4): 67-76.doi: 10.13385/j.cnki.vacuum.2021.04.13

• Measurement and Control • Previous Articles     Next Articles

Ion Energy and its Diagnosis in Helicon Plasma Source

JIANG Kai-yin, YANG Li-zhen, LIU Zhong-wei, ZHANG Hai-bao, CHEN Qiang   

  1. Lab of Plasma Physics &Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Received:2020-12-21 Online:2021-07-25 Published:2021-08-05

Abstract: This article reviews a new type of plasma,helicon plasma, which is characterized by its simple structure and generation of high-density plasma. First, the basic principle of helicon plasma is described briefly, including the helicon plasma source structure, heating mechanism, antenna form and energy coupling mode. Then, the characteristics and diagnosis methods of the helicon plasma are introduced. Among them, the ion energy distribution(IED)by the retarding field energy analyzer(RFEA)is emphasized, and the factors affecting IED value are analyzed. Subsequently, the application progresses of the helicon plasma in the three fields of etching, thin film deposition and electric propulsion are mainly introduced. Finally, the future perspectives of helicon plasma source and some challenges are pointed out.

Key words: helicon wave, structure, principle, ion energy distribution, application progress

CLC Number: 

  • O536
[1] SHINOHARA S, KUWAHARA D, FURUKAWA T, et al.Development of featured high-density helicon sources and their application to electrodeless plasma thruster[J]. Plasma Physics and Controlled Fusion, 2018, 61(1): 014017.
[2] BOSWELL R W, CHEN F F.Helicons-the early years[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1229-1244.
[3] LEGÉNDY C R. Macroscopic theory of helicons[J]. Physical Review, 1964, 135(6A): A1713.
[4] KLOZENBERG J P, MCNAMARA B, THONEMANN P C.The dispersion and attenuation of helicon waves in a uniform cylindrical plasma[J]. Journal of Fluid Mechanics, 1965, 21(3): 545-563.
[5] LEHANE J A, THONEMANN P C.An experimental study of helicon wave propagation in a gaseous plasma[J]. Proceedings of the Physical Society, 1965, 85(2): 301.
[6] BOSWELL R W.Very efficient plasma generation by whistler waves near the lower hybrid frequency[J]. Plasma Physics and Controlled Fusion, 1984, 26(10): 1147.
[7] ELLINGBOE A R, BOSWELL R W.Capacitive, inductive and helicon-wave modes of operation of a helicon plasma source[J]. Physics of Plasmas, 1996, 3(7): 2797-2804.
[8] PORTE L, YUN S M, ARNUSH D, et al.Superiority of half-wavelength helicon antennae[J]. Plasma Sources Science and Technology, 2003, 12(2): 287.
[9] CHEN F F.Helicon Plasma Sources, in“High Density Plasma Sources” ed[M]. Park Ridge: Oleg A. Popov, Noyes Publications, 1995.
[10] KINDER R L, KUSHNER M J.Wave propagation and power deposition in magnetically enhanced inductively coupled and helicon plasma sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001, 19(1): 76-86.
[11] CHEN F F.Physics of helicon discharges[J]. Physics of Plasmas, 1996, 3(5): 1783-1793.
[12] CHEN F F.Helicon discharges and sources: a review[J]. Plasma Sources Science and Technology, 2015, 24(1): 014001.
[13] BOSWELL R W, PORTEOUS R K.Large volume, high density rf inductively coupled plasma[J]. Applied physics letters, 1987, 50(17): 1130-1132
[14] CHEN F F.Experiments on helicon plasma sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 1389-1401.
[15] CARTER C, KHACHAN J.Downstream plasma characteristics from a single loop antenna in a helicon processing reactor[J]. Plasma Sources Science and Technology, 1999, 8(3): 432.
[16] WANG S J, KWAK J G, KIM C B, et al.Observation of enhanced negative hydrogen ion production in weakly magnetized RF plasma[J]. Physics Letters A, 2003, 313(4): 278-283.
[17] DEGELING A W, JUNG C O, BOSWELL R W, et al.Plasma production from helicon waves[J]. Physics of Plasmas, 1996, 3(7): 2788-2796.
[18] SHINOHARA S, SOEJIMA T.Trials of RF plasma production using different antenna geometries with magnetic field[J]. Plasma Physics and Controlled Fusion, 1998, 40(12): 2081.
[19] CHO S.The resistance peak of helicon plasmas at low magnetic fields[J]. Physics of Plasmas, 2006, 13(3): 033504.
[20] 赵高, 熊玉卿, 马超, 等. 短管螺旋波等离子体放电中等离子特性测量和模式转变的研究[J]. 物理学报, 2014, 63(23): 235202.
[21] LIEBERMAN M A, LICHTENBERG A J.Principles of plasma discharges and materials processing[M]. New York: John Wiley & Sons, 2005.
[22] DEGELING A, MIKHELSON N, BOSWELL R W, et al.Characterization of helicon waves in a magnetized inductive discharge[J]. Physics of Plasmas, 1998, 5(3): 572-579.
[23] SUZUKI K, NAKAMURA K, OHKUBO H, et al.Power transfer efficiency and mode jump in an inductive RF discharge[J]. Plasma Sources Science and Technology, 1998, 7(1): 13.
[24] CHEN F F, BOSWELL R W.Helicons-the past decade[J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1245-1257.
[25] SHAMRAI K P, TARANOV V B.Volume and surface rf power absorption in a helicon plasma source[J]. Plasma Sources Science and Technology, 1996, 5(3): 474.
[26] CHEN F F, BLACKWELL D D.Upper limit to Landau damping in helicon discharges[J]. Physical review letters, 1999, 82(13): 2677.
[27] LKGHT M, CHEN F F.Helicon wave excitation with helical antennas[J]. Physics of Plasmas, 1995, 2(4): 1084-1093.
[28] CHEN F F. Radiofrequency field enhancement near ion gyroresonance, TRW Report Task II-3552(1981) [EB/OL].[2020-10-10]. http://www.ee.ucla.edu/~ffchen/Archive/Chen
pdf.
[29] MILJAK D G, CHEN F F.Helicon wave excitation with rotating antenna fields[J]. Plasma Sources Science and Technology, 1998, 7(1): 61.
[30] MELAZZI D, LANCELLOTTI V.A comparative study of radiofrequency antennas for Helicon plasma sources[J]. Plasma Sources Science and Technology, 2015, 24(2): 025024.
[31] TYNAN G R, BAILEY III A D, CAMPBELL G A, et al. Characterization of an azimuthally symmetric helicon wave high density plasma source[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997, 15(6): 2885-2892.
[32] CHEN F F.Performance of a permanent-magnet helicon source at 27 and 13 MHz[J]. Physics of Plasmas, 2012, 19(9): 093509.
[33] BOSWELL R W, PORTEOUS R, PRYTZ A, et al.Some features of RF excited fully ionized low pressure argon plasma[J]. Physics Letters A, 1982, 91(4): 163-166.
[34] GAHAN D, DOLINAJ B, HAYDEN C, et al.Retarding field analyzer for ion energy distribution measurement through a radio-frequency or pulsed biased sheath[J]. Plasma Processes and Polymers, 2009, 6(S): 643-648.
[35] CHARLES C, BOSWELL R W, PORTEOUS R K.Measurement and modeling of ion energy distribution functions in a low pressure argon plasma diffusing from a 13.56MHz helicon source[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(2): 398-403.
[36] CHILD C D.Discharge from hot CaO[J]. Physical Review(Series I), 1911, 32(5): 492.
[37] LANGMUIR I.The effect of space charge and residual gases on thermionic currents in high vacuum[J]. Physical Review, 1913, 2(6): 450.
[38] BENOIT-CATTIN P, Bernard L C.Anomalies of the Energy of Positive Ions Extracted from High-Frequency Ion Sources. A Theoretical Study[J]. Journal of Applied Physics, 1968, 39(12): 5723-5726.
[39] METZE A, ERNIE D W, OSKAM H J.The energy distribution of ions bombarding electrode surfaces in rf plasma reactors[J]. Journal of Applied Physics, 1989, 65(3): 993-998.
[40] MILLER P A, RILEY M E.Dynamics of collisionless rf plasma sheaths[J]. Journal of Applied Physics, 1997, 82(8): 3689-3709.
[41] TSUI R T C. Calculation of ion bombarding energy and its distribution in rf sputtering[J]. Physical Review, 1968, 168(1): 107.
[42] CHARLES C, DEGELING A W, SHERIDAN T E, et al.Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer[J]. Physics of Plasmas, 2000, 7(12): 5232-5241.
[43] HERSHKOWITZ N, DING J, BREUN R A, et al.Does high density-low pressure etching depend on the type of plasma source?[J]. Physics of Plasmas, 1996, 3(5): 2197-2202.
[44] CHABERT P, PROUST N, PERRIN J, et al.High rate etching of 4H-SiC using a SF6/O2 helicon plasma[J]. Applied Physics Letters, 2000, 76(16): 2310-2312.
[45] TAKAHASHI K, MOTOMURA T, ANDO A, et al.Transport of a helicon plasma by a convergent magnetic field for high speed and compact plasma etching[J]. Journal of Physics D: Applied Physics, 2014, 47(42): 425201.
[46] YAMAYA K, YAMAKI Y, NAKANISHI H, et al.Use of a helicon-wave excited plasma for aluminum-doped ZnO thin-film sputtering[J]. Applied physics letters, 1998, 72(2): 235-237.
[47] JI P, CHEN J, HUANG T, et al.Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance[J]. Diamond and Related Materials, 2020: 107958.
[48] CHARLES C.A review of recent laboratory double layer experiments[J]. Plasma sources science and technology, 2007, 16(4): R1.
[49] CHARLES C, BOSWELL R W.Current-free double-layer formation in a high-density helicon discharge[J]. Applied Physics Letters, 2003, 82(9): 1356-1358.
[50] LIEBERMAN M A, CHARLES C, BOSWELL R W.A theory for formation of a low pressure,current-free double layer[J]. Journal of Physics D: Applied Physics, 2006, 39(15): 3294.
[51] 徐宗琦. 螺旋波等离子体推力器工作原理研究[D]. 大连: 大连理工大学, 2016.
[52] Ad Astra Rocket Company.[EB/OL].[2020.10.20].http://www.adastrarocket.com/aarc/history.
[53] SHABSHELOWITZ A, GALLIMORE A D, PETERSON P Y.Performance of a helicon Hall thruster operating with Xenon, Argon, and Nitrogen[J]. Journal of Propulsion and Power, 2014, 30(3): 664-671.
[54] WILLIAMS L T, WALKER M L R. Ion production cost of a gridded helicon ion thruster[J]. Plasma Sources Science and Technology, 2013, 22(5): 055019.
[55] 赵高, 王慧慧, 欧阳吉庭, 等. 利用简式探针与光谱法研究螺旋波等离子体的空间分布[C]. 全国等离子体科学技术会议, 2017.
[56] 黄建国, 赵华, 任琼英, 等. 螺旋波电推进火星超低轨道维持技术研究[C]//中国宇航学会深空探测技术专业委员会第九届学术年会论文集(上册), 2012.
[57] 夏广庆, 王冬雪, 薛伟华, 等. 螺旋波等离子体推进研究进展[J]. 推进技术, 2011, 32(6): 857-863.
[58] 杨雄. 螺旋波等离子体推力器理论与实验研究[D]. 长沙: 国防科学技术大学, 2012.
[59] 李波, 王一白, 张普卓, 等. VASIMR中螺旋波等离子体源设计[J]. 北京航空航天大学学报, 2012(6): 13-18.
[1] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[2] QI Da-wei, LI Wei-hua, LI Chuan-xu, WU Bin, CHEN De-jiang, TANG Zhi-gong. Pneumatic Design of Centrifugal Vacuum Pump for Large Wind Tunnel [J]. VACUUM, 2021, 58(4): 49-53.
[3] WANG Ying, XING Wang, MING Yue, ZHU Yi-ming. Numerical Strength Simulation of Steel Strip Winding Cylinder of Isostatic Pressing Container [J]. VACUUM, 2021, 58(3): 82-85.
[4] LIU Yan-wen, ZHAO Li, LU Yu-xin, TIAN Hong, SHI Wen-qi, ZHAO Heng-bang. Storage of Copper Parts Used in Microwave Vacuum Devices [J]. VACUUM, 2021, 58(2): 58-61.
[5] WU Jian-kun, LI Zhao-guo, PENG Li-ping, YI yong, ZHANG Ji-cheng. Effect of Nitrogen Ratio on Structure and Color of ZrN thin Films [J]. VACUUM, 2021, 58(1): 57-62.
[6] WANG Ying, MING Yue, DAI Yu-bo, CHE En-lin, WANG Biao. Structure Optimization of Graphite Furnace for Vacuum High Temperature Heat Treatment Furnace [J]. VACUUM, 2020, 57(6): 27-30.
[7] BAO Si-ping, ZHAO Yi-hong, ZHOU Xiao-jin, WANG Zi-li, HE Yu-long, GENG Hao-ran, WANG Kai, SHI Min-jie, CHEN Rong-fa. Effect of Vacuum Heat Treatment on the Microstructure and Wear Resistance of 42CrMo Alloy Rotor [J]. VACUUM, 2020, 57(6): 31-34.
[8] WEI Xian-lu, GONG Chen-yang, XIAO Jian-rong. Structure and Optical Properties of MoS2 Thin Films Prepared by RF Reactive Magnetron Sputtering [J]. VACUUM, 2020, 57(5): 11-13.
[9] ZHAO Xing-wang, LIU Yan-mei, FU He-guo, SHI Ji-peng, GUAN Feng. Research on Microstructure and Mechanical Properties of Laser Butt Welding of Thin TC4 Titanium Alloy [J]. VACUUM, 2020, 57(4): 89-94.
[10] LIU Yan-mei, MIAO Yu-hua, PAN Xin, LIU Biao, WANG Cun-shan, LIN Guo-qiang. Analysis on Microstructure and Properties of Graphite/Ni and Graphene Composite Coatings Fabricated by Laser Cladding [J]. VACUUM, 2020, 57(4): 85-88.
[11] ZHANG Qing-fang, YI Yong, LUO Jiang-shan. Effect of Sputtering Power on Microstructure of Er Thin Films Deposited by Magnetron Sputtering [J]. VACUUM, 2020, 57(3): 17-20.
[12] LI Lun, ZHAO Ji-bin, ZHOU Bo, TIAN Tong-tong. Slicing Algorithm for Additional Manufacturing Based on Corner Table Data Structure [J]. VACUUM, 2020, 57(3): 84-88.
[13] FANG Bo, ZHANG Lin, CAI Fei, ZHANG Shi-hong. Study on Wear Properties of Duplex-Treated CrVN Composite Coatings by Plasma Nitriding and Arc Ion Plating [J]. VACUUM, 2020, 57(2): 33-39.
[14] WANG Di, LIN Song-sheng, LIU Ling-yun, YANG Hong-zhi, JIANG Bai-ling, XUE Yu-na, ZHOU Ke-song. Research Progress of Surface Treatment Technology on Fatigue Properties of Titanium Alloy [J]. VACUUM, 2019, 56(6): 36-42.
[15] LIU Zhao, XING Hong-shuo, SU Jia-hao, ZHANG Jun-shen, LIANG Shuai, XIE Yuan-hua, HAN Jin. Discussion on Present Situation and Development Trend of Vacuum Elevator [J]. VACUUM, 2019, 56(6): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .