欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (1): 33-39.doi: 10.13385/j.cnki.vacuum.2022.01.07

Previous Articles     Next Articles

Study on Optical and Electrical Properties of β-Ga2O3/p-SiNWs Heterojunctions

ZHANG Jie, DENG Jin-xiang, XU Zhi-yang, KONG Le, DUAN Ping, WANG Xiao-lei, MENG Jun-hua, LI Rui-dong, ZHANG Xiao-xia, SUN Xu-peng, YANG Zi-shu   

  1. Department of Science, Beijing University of Technology, Beijing 100124, China
  • Received:2021-01-08 Online:2022-01-25 Published:2022-01-27

Abstract: As a band gap semiconductor material, Ga2O3 is considered to be a promising material owing to its ultra-wide band gap(4.9eV), high breakdown field intensity and excellent thermal stability. β-Ga2O3/p-SiNWs heterojunctions were fabricated by RF magnetron sputtering of β-Ga2O3 layers onto the p-SiNWs substrates. The optical and electrical properties of heterojunctions were studied. The p-SiNWS showed excellent“light trapping” characteristics with the reflection coefficient to be 1/6 of the planar Si, which decreased gradually with the increase of the length of substrate nanowires. Photoluminescence spectroscopy(PL) tests showed that all the samples exhibited a typical green emission peak near 551nm at room temperature. β-Ga2O3/p-SiNWs heterojunctions showed obvious rectifying characteristics with rectifying coefficient of 1724 at V=1.40V. The ideal factor of heterojunctions increased gradually with the increase of length of substrate nanowires, and the optimal factor value is 1.98. The charge transfer mechanism of heterojunctions was investigated by logI-logV curve. The crystallinity of the β-Ga2O3 film was enhanced by annealing,which also improved the electrical properties of the heterojunctions.

Key words: Ga2O3, SiNWs, heterojunction, optical property, electrical property

CLC Number: 

  • O475
[1] DU X, MEI Z, LIU Z, et al.Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors[J]. Advanced Materials, 2009, 21(45): 4625-4630.
[2] GUO D Y, WU Z P, AN Y H, et al.Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors[J]. Applied Physics Letters, 2014, 105(2): 031912.
[3] ZHENG W, LIN R C, ZHU Y M, et al.Vacuum ultraviolet photodetection in two-dimensional oxides[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20696-20702.
[4] FANG X S, HU L F, HUO K F, et al.New ultraviolet photodetector based on individual Nb2O5 nanobelts[J]. Advanced Functional Materials, 2011, 21(20): 3907-3915.
[5] GUO D Y, LIU H, LI P G, et al.Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1619-1628.
[6] XIAO Y F, LIU W, LIU C, et al.Large-area vertically stacked MoTe2/β-Ga2O3 p-n heterojunction realized by PVP/PVA assisted transfer[J]. Applied Surface Science, 2020, 530: 147276.
[7] WANG Y H, YANG Z, LI H, et al.Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 Van Der Waals Heterojunctions[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47714-47720.
[8] ATILGAN A, YILDIZ A, HARMANCI U, et al.β-Ga2O3 nanoflakes/p-Si heterojunction self-powered photodiodes[J]. Materials Today Communications, 2020, 24: 101105.
[9] YU J G, YU M, WANG Z, et al.Improved photoresponse performance of self-powered β-GaO/NiO heterojunction UV photodetector by surface plasmonic effect of Pt nanoparticles[J]. IEEE Transactions on Electron devices, 2020, 67(8): 3199-3204.
[10] HUANG Z, GEYER N, WERNER P, et al.Metal-assisted chemical etching of silicon: A review.[J]. Advanced Materials, 2011, 23(2): 285-308.
[11] ZHANG M L, PENG K Q, FAN X, et al.Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching[J]. Journal of Physical Chemistry C, 2008, 112(12): 4444-4450.
[12] CHANG S W, CHUANG V P, BOLES S T, et al.Metal-catalyzed etching of vertically aligned polysilicon and amorphous silicon nanowire arrays by etching direction confinement[J]. Advanced Functional Materials, 2010, 20(24): 4364-4370.
[13] JANGIR R, PORWAL S, TIWARI P, et al.Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures[J]. Aip Advances, 2016, 6(3): 1241-9328.
[14] LI S F, JIAO S J, WANG D B, et al. The influence of sputtering power on the structural,morphological and optical properties of beta-Ga2O3 thin films[J]. Journal of Alloys and Compounds, 2018, 753: 186-191.14
[15] QI X, SONG Y, SHENG Y, et al.Controllable synthesis and luminescence properties of TiO2: Eu3+ nanorods, nanoparticles and submicrospheres by hydrothermal method[J]. Optical Materials, 2014, 38: 193-197.
[16] YAN S, WAN L, LI Z, et al.Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO[J]. Chemical Communications, 2010, 46(34): 6388-6390.
[17] YANG H Q, SHI R Y, YU J, et al.Single-crystalline β-Ga2O3 hexagonal nanodisks: Synthesis, growth mechanism, and photocatalytic activities[J]. The Journal of Physical Chemistry C, 2009, 113(52): 21548-21554.
[18] CAO L, LI M K, YANG Z, et al.Synthesis and characterization of dentate-shaped β-Ga2O3 nano/microbelts via a simple method[J]. Applied Physics A, 2008, 91(3): 415-419.
[19] WU X C, SONG W H, HUANG W D, et al.Crystalline gallium oxide nanowires: Intensive blue light emitters[J]. Chemical Physics Letters, 2000, 328(1): 5-9.
[20] LAURENT, BINET, DIDIER, et al. Origin of the blue luminescence of β-Ga2O3[J]. Journal of Physics and Chemistry of Solids, 1998, 59(8): 1241-1249.
[21] KIM J K, CHO K, KIM T Y, et al.p-n heterojunction diodes[J]. Scientific Reports, 2016, 6: 36775.
[22] AYDIN M E, TUERUET A.The electrical characteristics of Sn/methyl-red/p-type Si/Al contacts[J]. Microelectronic Engineering, 2007, 84(12): 2875-2882.
[23] CHEN L, DENG J X, GAO H L, et al.Organometallic hybrid perovskites: structural, optical characteristic and application in Schottky diode[J]. Journal of Materials Science Materials in Electronics, 2016, 27(5): 4275-4280.
[24] GHOSH R, BASAK D.Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction[J]. Applied Physics Letters, 2007, 90(24): 243106.
[25] YE J D, GU S L, ZHU S M, et al.Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions[J]. Applied Physics Letters, 2006, 88(18): 3257.
[26] DUTTA M, BASAK D. p-ZnO/n-Si heterojunction: Sol-gel fabrication,photoresponse properties, and transport mechanism[J]. Applied Physics Letters, 2008, 92(21): 383.
[1] ZHANG Xiao-xia, DENG Jin-xiang, KONG Le, LI Rui-dong, YANG Zi-shu, ZHANG Jie. Preparation and Study of Si-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(5): 57-61.
[2] YANG Zi-shu, DUAN Ping, DENG Jin-xiang, ZHANG Xiao-xia, ZHANG Jie, YANG Qian-qian. Preparation and Study of Mg-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(3): 30-34.
[3] LI Ru-yong, DUAN Ping, CUI Min, WANG Ji-you, YUAN An-juan, DENG Jin-xiang. Effect of post-annealing on Mg doped Ga2O3 films deposited by RF magnetron sputtering [J]. VACUUM, 2019, 56(3): 37-40.
[4] ZHONG Zhao-jin, CAO Xin, GAO Qiang, HAN Na, CUI Jie-dong, SHI Li-fen, YAO Ting-ting, MA Li-yun, PENG Shou. Effect of RF sputtering power on properties of AZO thin films deposited at room temperature [J]. VACUUM, 2019, 56(1): 45-48.
[5] YAO Ting-ting, ZHONG Zhao-jin, LI Gang, TANG Yong-kang, YANG Yong, JIN Ke-wu, SHENG Hong-xue, WANG Tian-qi, PENG Saiao, JIN Liang-mao, SHEN Hong-lie, GAN Zhi-ping, MA Li-yun. Study on fabrication and properties of micro-nano structure AZO films by DC coupled RF sputtering [J]. VACUUM, 2018, 55(6): 64-67.
[6] WANG Xiao-ran, MA Yan-bin, DUAN Ping, LI Ru-yong, ZHUANG Bi-hui, CUI Min, YUAN An-juan, DENG Jin-xiang. Effect of Mg doping concentration on Ga2O3 thin films prepared by RF magnetron sputtering [J]. VACUUM, 2018, 55(6): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .