欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (2): 6-10.doi: 10.13385/j.cnki.vacuum.2022.02.02

• Measurement and Control • Previous Articles     Next Articles

Influence of Surface Plasma Activation on Cyanate Ester Composites

MENG Chao1, YUE Shou-jing1, XUAN Li-xin, XUE Hong-ming1, GAO Zhen1, WANG Xin-chao2   

  1. 1. The Aeronautical Science Key Lab for High Performance Electromagnetic Windows, The Research Institute for Special Structures of Aeronautical Composite AVIC, Ji′nan 250023, China;
    2. Southwestern Institute of Physics, Chengdu 610041, China
  • Received:2021-04-26 Online:2022-03-25 Published:2022-04-14

Abstract: The surface of the quartz fiber/cyanate ester composite material at different working distances was activated by plasma treatment technology. The influence of plasma treatment parameters on the surface contact angle of the composite was investigated, as well as the changes of surface morphology, the intrinsic performance and membrane-based bonding strength before and after plasma treatment. The results show that the surface contact angle of the composite material decreases significantly after plasma treatment with nitrogen and argon, and decreases with the decrease of action distance. Moreover, the overall activation effect of argon is better than that of nitrogen. The important degree of influence factors of process parameters is in order of air pressure, voltage and time. If the air pressure and voltage are increased in a certain range and the treatment time is extended, the surface contact angle of composite material becomes smaller and the activation effect is better. The glass transition temperature and bending strength of the composites is unchanged, showing that the intrinsic performance of the composites are not damaged before and after plasma treatment. After plasma treatment,the surface roughness and specific surface area of the composite increase, and the membrane-based bonding strength of the composite with Al coating increases significantly.

Key words: cyanate ester composites, plasma, contact angle, surface morphology, intrinsic performance, membrane-based bonding strength

CLC Number: 

  • TB332
[1] 赵磊, 梁国正, 秦华宇, 等. 氰酸酯树脂在宇航复合材料中的应用[J]. 宇航材料工艺, 2000, 30(2): 17-21.
[2] 陈梦怡, 蔡良元, 钟翔屿, 等. 石英纤维增强氰酸酯树脂基复合材料性能研究[J]. 高科技纤维与应用, 2009, 34(3): 24-26, 30.
[3] 钟翔屿, 包建文, 李晔, 等. 5528氰酸酯树脂基玻璃纤维增强复合材料性能研究[J]. 纤维复合材料, 2007(3): 3-5.
[4] 孟庆杰, 石军威, 徐亮, 等. 空心石英玻璃纤维增强氰酸酯基低介电复合材料的制备及性能分析[J]. 材料导报, 2018, 32(S1): 110-112.
[5] 黄伟, 耿嘉阳, 徐磊, 等. 氰酸酯树脂及其复合材料的研究进展[J]. 黑龙江科学, 2016, 7(18): 6-7, 9.
[6] 孙煜, 徐任信, 郑从伟, 等. 改性氰酸酯基复合材料力学和透波性能研究[J]. 玻璃钢/复合材料, 2015(6): 18-22.
[7] WANG Y Q, KOU K C, ZHOU L H, et al.Preparation of boz/glass fibers/cyanate ester resins laminated composites[J]. Polymer Composites, 2017, 38(3): 523-527.
[8] 闫福胜, 王志强, 张明习. 氰酸酯树脂的性能与应用[J]. 工程塑料应用, 1996(6): 11-13.
[9] 刘晓春, 文武, 孙世宁. 频选雷达罩电性能的基本问题及解决方法[J]. 雷达科学与技术, 2012, 10(3): 336-340.
[10] ŠIMOR M, FIALA A, KOVÁČIK D, et al. Corrosion protection of a thin aluminium layer deposited on polyester[J]. Surface and Coatings Technology, 2007, 201(18): 7802-7812.
[11] 朱黎黎, 张佐光, 李敏, 等. 工艺温度下树脂与纤维的接触角及其粘附作用研究[J]. 复合材料学报, 2010, 27(5): 41-46.
[12] JIA J, CHEN J, ZHOU H, et al.Comparative investigation on the wear and transfer behaviors of carbon fiber reinforced polymer composites under dry sliding and water lubrication[J]. Composites Science and Technology, 2005, 65(7): 1139-1147.
[13] 曹芳维, 李敏, 王绍凯, 等. 碳纤维与环氧树脂润湿和黏附作用[J]. 复合材料学报, 2011, 28(4): 23-28.
[14] DILSIZ N.Plasma surface modification of carbon fibers: A review[J]. Journal of Adhesion Science and Technology, 2000, 14(7): 975-987.
[15] 张成, 刘兆政, 孙明娟, 等. 低温等离子体碳纤维表面处理技术研究[J]. 材料导报, 2018, 32(S1): 294-296.
[16] 杨涛, 倪新亮, 金凡亚, 等. 低温氮、氧等离子体处理碳纤维/树脂复合材料[J]. 真空科学与技术学报, 2015, 35(10): 1214-1219.
[17] 赵栋才, 武生虎, 马占吉, 等. 镀膜前离子束清洗对复合材料表面Al膜附着力影响研究[J]. 真空科学与技术学报, 2013, 33(9): 867-870.
[18] 王新超, 但敏, 张帆, 等. 不同作用距离下玻璃纤维增强的氰酸酯基复合材料表面等离子体活化研究[J]. 真空科学与技术学报, 2020, 40(3): 233-239.
[1] WEI Yong-qiang. Characteristics of Spatial Transmission Velocity and Energy of Ti Macroparticles in Arc Ion Plating Processing [J]. VACUUM, 2021, 58(6): 48-54.
[2] YANG Tong, YIN Zheng-xin, QIU Ji-er, YANG Sheng-yuan, ZHANG Qing-bo, YU De-ping. Research on the Static and Dynamic Behavior on the Plasma Torch Used for Plasma Atomization [J]. VACUUM, 2021, 58(5): 66-71.
[3] FENG Jie, CHENG Rong, ZHAO Yong, WANG Yan-long, WANG Shang-min, ZHANG Hong, JIA Yan-hui. FFT Analysis of Discharge Oscillations of Plasma Contactor [J]. VACUUM, 2021, 58(5): 72-76.
[4] TU Jun, SONG Wen-jie, ZHANG Bin, YU De-ping, LI Yi-hong. Experimental Study on the Working Characteristics of Steam Plasma Torch [J]. VACUUM, 2021, 58(4): 87-92.
[5] ZHOU Mei-li, SHI Chang-yong, CHEN Qing. Study on DLC Coating Uniformity in the Tube Inner Wall Through Microwave Surface Wave Plasma Deposition [J]. VACUUM, 2021, 58(3): 39-44.
[6] CHAI Hao, JIA Jun-wei, WANG Bin, LI Peng, CUI Shuang, FENG Xu, LI Wei, LIU Zhan, LI Shao-fei, CHEN Quan. Design and Characteristic Study on Compact Microwave ECR Plasma Source [J]. VACUUM, 2021, 58(1): 6-9.
[7] WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong. Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating [J]. VACUUM, 2021, 58(1): 63-66.
[8] YIN Ji-ping, QIAO Hong, LIN Zeng, BA De-chun. Data Processing System of Single Langmuir Probe Based on LabVIEW [J]. VACUUM, 2020, 57(6): 48-53.
[9] ZHANG Tian-yi, Yang Zhi-hao, LIU Yun-hui, MA Yu-tian, WANG Bo. Effect of Structure and Material of Narrow-Electrode with Quartz Plate Interlayer on DC Plasma Discharge [J]. VACUUM, 2020, 57(5): 61-65.
[10] WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6.
[11] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[12] WANG Xiao-ming, E Dong-mei, WU Jun-sheng, ZHANG Xu-yue, ZHOU Yan-wen. Simulation of MagnetronSputtering Enhancement Based on Plasma [J]. VACUUM, 2020, 57(3): 5-6.
[13] YANG Bo, LAI You-bin, WANG Dong-yang, LI Xiang, WU Hai-long, SUN Ming-han,YUAN Ren-yue, SUN Shi-jie. Study on Surface Hardness of Plasma Cladding Layer for High Chromium Iron-Based Alloy [J]. VACUUM, 2020, 57(1): 88-93.
[14] WANG Dong-yang, LAI You-bin, YANG Bo, LI Xiang, WU Hai-long, SUN Ming-han, YUAN Ren-yue, SUN Shi-jie. Influence of Process Parameter on the Residual Stress of Multi-Track Overlapping Plasma Cladding [J]. VACUUM, 2019, 56(6): 80-84.
[15] ВВ.А.ШАПОВАЛОВ, XU Xiao-hai, WANG Yuan, SUN Zu-lai, SONG Qing-zhu, LI Jian-jun. Application of Plasma Technology in Smelting and Foundry Production [J]. VACUUM, 2019, 56(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[2] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[3] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[4] MA Jia-jie, LI Jian-chang, CHEN Bo. Latest studies on memristor's integration and application[J]. VACUUM, 2018, 55(5): 71 -85 .
[5] Alessandro Abatecola. A new high-conductance ion pump for particle accelerator[J]. VACUUM, 2019, 56(1): 16 -19 .
[6] SHEN Fu-bo, WANG Jie, ZHAI Yue, ZHOU Zhi-peng. Light shell design of low temperature adsorption bed and its optimization[J]. VACUUM, 2018, 55(6): 42 -44 .
[7] LIU Shun-ming, SONG Hong, DONG Hai-yi, GUAN Yu-hui, LIU Sheng-hua. Applications of quadrupole mass spectrometer in drift tube linear accelerator[J]. VACUUM, 2018, 55(6): 5 -9 .
[8] SUI Wen, ZHANG Chi, LI Jian-chang. Design of a small-scale vacuum fabrication system specialized for studying organic light-emitting diodes[J]. VACUUM, 2019, 56(3): 6 -9 .
[9] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch[J]. VACUUM, 2019, 56(1): 56 -58 .
[10] LI Hao, WANG Dong-wei, ZHANG Chuan, LIU Chan, HUANG Mei-dong. Study on corrosion-resistance of Cr/CrN multilayers by arc ion plating[J]. VACUUM, 2019, 56(3): 21 -26 .