欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 35-41.doi: 10.13385/j.cnki.vacuum.2024.04.07

• Vacuum Acquisition System • Previous Articles     Next Articles

Latest Research Progress and Simulation Optimization of Pulse Tube Cryocooler

JIANG Yuan-zhen1, DENG Jia-liang1,2, HAN Yu-song1, WU Yi-feng1,2   

  1. 1. Vacre Technology Co., Ltd., Hefei, 230088, China;
    2. China Electronic Technology Corporation 16th Institute, Hefei 230088, China
  • Received:2023-12-18 Online:2024-07-25 Published:2024-07-29

Abstract: Higher stability, longer operating time and low vibration characteristics of pulse tube cryocooler (PTC) meet the requirements of high vacuum equipment and low-temperature pumps for cold sources, so PTC is increasingly popular in the field of low-temperature vacuum pumps. First, the basic principle and classification of PTC is introduced. And then, the latest development progress of PTC is summarized according to the driving mode. Finally, the advantages and disadvantages of different simulation methods in the development and optimization process are analyzed emphatically.

Key words: cryopump, pulse tube cryocooler, simulation optimization

CLC Number:  TB752+.53

[1] ZHU S, KAKIMI Y, MATSUBARA Y.Investigation of active-buffer pulse tube refrigerator[J]. Cryogenics, 1997, 37(8): 461-471.
[2] 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京:科学出版社, 2010.
[3] MIKULIN E I, TARASOV A A, SHKREBYONOCK M P.Low-temperature expansion pulse tubes[J]. Advances in Cryogenic Engineering, 1984, 29: 629-637.
[4] RADEBAUGH R, LOUIE B, SMITH D R, et al.A comparison of three types of pulse tube refrigerators- new methods for reaching 60 K[J]. Advances in Cryogenic Engineering, 1986, 31: 779-789.
[5] ZHU S W, WU P Y, CHEN Z Q.Double inlet pulse tube refrigerators: an important improvement[J]. Cryogenics, 1990, 30(6): 514-520.
[6] RAVEX A, ROLLAND P, LIANG J, et al.Experimental study and modelisation of a pulse tube refrigerator[J]. Cryogenics, 1992, 32: 9-12.
[7] MIKHEEV V A, MASUHARA N, WAGNER T, et al.A miniature pulse tube refrigerator for temperatures below 100 K[J]. Cryogenics, 1994, 34(2): 167-168.
[8] 何永林. 高效率G-M型脉管制冷机的理论与实验研究[D]. 杭州:浙江大学, 2007.
[9] LIU B Q, JIANG Z H, YING K K, et al.A high efficiency Stirling/pulse tube hybrid cryocooler operating at 35K/85K[J]. Cryogenics, 2019, 101: 137-140.
[10] WU W T, CUI X Y, LIU S S, et al.Cooling performance improvement of a two-stage pulse tube cryocooler with er-plated screen as regenerator material[J]. International Journal of Refrigeration, 2021, 131: 615-622.
[11] YOU X K, QIU L M, ZHANG H, et al.Study on the impedance characteristics of a high-capacity pulse tube cryocooler-ScienceDirect[J]. Energy Reports, 2022,8: 2210-2218.
[12] JIN T, CHEN G B, SHEN Y.A thermoacoustically driven pulse tube refrigerator capable of working below 120 K[J]. Cryogenics, 2001, 41(8): 595-601.
[13] TANG K, CHEN G B, JIN T, et al.Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator[J]. Cryogenics, 2005, 45(3): 185-191.
[14] 胡江风, 胡剑英, 徐静远, 等. 谐振子耦合型热声驱动脉管制冷机研究[J]. 制冷学报, 2018, 39(1): 56-63.
[15] DESAI S, DESAI K P, NAIK H B, et al.Performance prediction of ptr for different pressure waveforms[J]. Proceedings of the American Institute of Physics, 2008, 985(1): 1691-1698.
[16] ZHU S W, NOGAWA M, INOUE T.Analysis of DC gas flow in GM type double inlet pulse tube refrigerators[J]. Cryogenics, 2009, 49(2): 66-71.
[17] 王超, 邱利民, 董文庆, 等. G-M型脉管制冷机电磁阀和旋转阀配气系统的比较实验研究[J]. 低温工程,2010(5): 6-10.
[18] 程章展, 甘智华, 邱利民, 等. 20 K温区GM型单级脉管制冷机初步实验[J]. 低温工程, 2004(3): 9-12.
[19] 蒋彦龙, 陈国邦, 甘智华, 等. 高性能G-M型单级脉管制冷机直流抑制和制冷特性实验研究[J]. 低温物理学报, 2004, 26(2): 112-119.
[20] 刘东立, 甘智华. 单级G-M 型小孔脉管制冷机 Sage 建模[J]. 低温工程, 2015(5): 8-12.
[21] SHIRAISHI M, MURAKAMI M.Visualization of oscillating flow in a double-inlet pulse tube refrigerator with a diaphragm inserted in a bypass-tube[J]. Cryogenics, 2012, 52(7): 410-415.
[22] 唐立, 邱利民, 何永林, 等. 单级G-M型脉管制冷机回热器性能[J]. 低温工程, 2006(4): 1-4.
[23] 孙贺, 邱利民, 甘智华, 等. 大功率单级脉管制冷机回热器性能模拟与实验[J]. 低温工程, 2008(6): 13-17.
[24] 李卓裴, 邱利民, 刘国军, 等. 热声发动机驱动的脉管制冷机模拟及实验研究[J]. 浙江大学学报(工学版), 2009, 43(8): 1458-1462.
[25] 王禹贺, 祁影霞, 车闫瑾, 等. 基本型脉管内气体振荡制冷机理的分子动力学模拟[J]. 制冷学报, 2019, 40(1): 71-78.
[26] GIFFORD W E, LONGSWORTH R C.Surface Heat Pumping[J]. Advances in Cryogenic Engineering, 1966, 11: 171-179.
[27] 陶杰, 祁影霞, 刘雅丽, 等. 基于分子动力学的充气压力影响脉管制冷机性能机理研究[J]. 热能动力工程, 2022, 37(3): 9-14.
[28] 蒋燕阳. 20K深低温双级脉管制冷机关键技术研究 [D]. 上海:中国科学院大学(中国科学院上海技术物理研究所), 2017.
[29] LIU S S, JIANG Z H, DING L, et al.Effects of cold‐end temperature and heat load on the cooling characteristics of a pulse tube refrigerator. Energy Science & Engineering. 2020, 8(3): 731-9.
[30] 王仕越. 小型脉冲管低温制冷机相位分析与性能优化[D]. 上海:上海交通大学, 2012.
[31] 王海敏, 戴巍, 王晓涛, 等. 20K温区单级斯特林型脉管制冷机研究[J]. 低温工程, 2013, (1): 1-6.
[32] KIM K, ZHI X Q, QIU L M, et al.Numerical analysis of different valve effects on the cooling performance of a two-stage GM type pulse tube cryocooler[J]. International Journal of Refrigeration, 2017, 77: 1-10.
[33] FANG K, NAKANO K, LIN X G, et al.Investigation on numerical optimization method for high capacity two-stage 4 K pulse tube cryocooler[J]. IOP Conference Series: Materials Science and Engineering, 2019, 502(1): 012040.
[34] 李子木, 栾明凯, 曹强, 等. 液氮温区脉管制冷机中的直流影响机理研究[J]. 制冷技术, 2019, 39(5): 1-8.
[35] SCHMIDT J A, SCHMIDT B, DIETZEL D, et al.Improvement strategies for a low input power 4 K pulse tube cooler: Experiments and sage simulations[J]. Cryogenics, 2022, 122: 103417.
[36] HOZUMI Y, SHIRAISHI M, MURAKAMI M.Simulation of thermodynamics aspects about pulse tube refrigerator[J]. American Institute of Physics, 2004,710(1): 1500-1507.
[37] CHA J S, GHIAASIAAN S M, DESAI P V, et al.Multi-dimensional flow effects in pulse tube refrigerators[J]. Cryogenics, 2006, 46(9): 658-665.
[38] 何雅玲, 高凡, 陶于兵, 等. 脉管制冷机的整机数值模拟[J]. 西安交通大学学报, 2009, 43(3): 1-9.
[39] BANJARE Y P, SAHOO R K, SARANGI S K.CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator[J]. Cryogenics, 2010, 50(4): 271-280.
[40] DAI Q T, CHEN Y Y, YANG L W.CFD investigation on characteristics of oscillating flow and heat transfer in 3D pulse tube[J]. International Journal of Heat & Mass Transfer, 2015, 84: 401-408.
[41] PANG X M, WANG H, WANG X T, et al.Numerical investigation on the influence of radial thermal conduction in a co-axial pulse tube cooler[J]. International Journal of Refrigeration, 2022, 139: 128-135.
[1] LU Zheng-yang, GUAN Cheng-hong, YANG Chen, CHEN Jie, LI Yan-feng, DONG Wen-qing. Development of KDCP-16 Cryopump with Large Pumping Speed and High Capacity [J]. VACUUM, 2024, 61(4): 42-46.
[2] YU Yan-fei, LI Xiao-gang, HU Xiang-e, CHEN Jin-wen, CHEN Jie-xin. Measurement and Analysis of Pumping Speed of G-M Refrigerator Cryopump Based on the Orifice Method [J]. VACUUM, 2024, 61(3): 20-25.
[3] DENG Jia-liang, ZENG Huan, YANG Yang, FENG Xin-yu, WU Yi-feng. Performance Test of 200mm Diameter Cryopump for Semiconductor PVD Usage [J]. VACUUM, 2023, 60(5): 75-80.
[4] FENG Xin-yu, YANG yang. Current Status of Refrigerator Cryopump for IC Manufacturing [J]. VACUUM, 2022, 59(2): 42-47.
[5] ZENG Huan, DENG Jia-liang, SUN Zhi-he. Design of the 250mm Caliber Cryopump [J]. VACUUM, 2020, 57(2): 13-16.
[6] ZHAO Yue-shuai, SUN Li-chen, SHAO Rong-ping, YAN Rong-xin, SUN Wei, LI Zheng. Design and performance test of DN1250 LN2 refrigerator cooled cryopumps [J]. VACUUM, 2019, 56(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .