欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 42-46.doi: 10.13385/j.cnki.vacuum.2024.04.08

• Vacuum Acquisition System • Previous Articles     Next Articles

Development of KDCP-16 Cryopump with Large Pumping Speed and High Capacity

LU Zheng-yang, GUAN Cheng-hong, YANG Chen, CHEN Jie, LI Yan-feng, DONG Wen-qing   

  1. CSIC Pride Cryogenic Technology Co., Ltd., Nanjing 211100, China
  • Received:2023-08-24 Online:2024-07-25 Published:2024-07-29

Abstract: The large pumping speed and high capacity KDCP-16 cryopump independently developed by CSIC Pride Cryogenic Technology Co., Ltd. is introduced. The pumping speed and thermal load of the cryopump are theoretically calculated. The test methods of the main performance indexes (pumping speed, cool down time, gas capacity, crossover value) of KDCP-16 cryopump are introduced. The results show that the N2 pumping speed of KDCP-16 cryopump is 6 550 L/s, the Ar pumping speed is 5 650 L/s, the cooling time is 110 minutes, the Ar gas capacity is 7 550 std·L, and the crossover value is 6.7×104 Pa·L. The performance index of KDCP-16 cryopump is better than that of foreign cryogenic pumps of the same size.

Key words: cryopump, pumping speed, cool down time, gas capacity, crossover value

CLC Number:  TB752

[1] 达道安. 真空设计手册[M]. 北京:国防工业出版社,2004.
[2] GUPTA V, GANGRADEY R, MUKHERJEE S S, et al.Performance testing of the liquid nitrogen cooled sorption cryopump for application in SST-1 Tokamak[J]. Fusion Engineering and Design, 2022, 181: 1-15.
[3] PEDROCHE G, LOPEZ-REVELLES A J, KOLSEK A, et al. Nuclear analysis of the ITER torus cryopumps[J]. Nuclear Fusion, 2019, 59(10): 106045.
[4] 姜万顺. 低温泵的特性和原理[J]. 真空与低温, 1982(2): 40-45.
[5] 江涛, 曹建勇, 雷光玖, 等. 低温泵用椰基活性炭材料的选择和比较[J]. 核聚变与等离子体物理, 2018, 38(2): 211-215.
[6] PARK J, KO J, KIM H, et al.Development of a large capacity cryopump equipped with a two-stage GM cryocooler[J].Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2022, 217: 119217.
[7] MIZUNO T, IIDA T, ISHINO Y, et al.Suppression of vibration induced by reciprocal motion of displacer in cryopump with an active dynamic vibration absorber[J]. IFAC-PapersOnLine, 2019, 52(15): 531-536.
[8] 中国电子技术标准化研究所.制冷机低温泵总规范: SJ/T 11259-2001[S]. 北京:工业电子出版社, 2002.
[9] GILANKAR S G, KUSH P K.Experimental verification of capture coefficients for a cylindrical cryopanel of closed cycle refrigerator cryopump[J]. Journal of Physics Conference, 2008, 114: 012058.
[10] HAEFER R A.Cryopumping. Theory and practice[M]. Monographies on Cryogenics, Oxford: Clarendon Press, 1989.
[11] 高香院. 现代低温泵[M]. 西安: 西安交通大学出版社, 1990.
[12] 曾环, 邓家良, 孙志和. 250 mm口径低温泵设计[J].真空, 2020, 57(2): 13-16.
[13] 吴德忠, 周利娟. 新型HIRFL-800低温泵的设计及热负荷的计算[J]. 低温工程, 2002(3): 48-52.
[14] 彭楠, 熊联友, 刘立强, 等. 低温真空泵辐射挡板流导几率的计算[J]. 低温工程, 2006(6): 21-24.
[15] 武义锋, 徐中堂. DN900LN2型低温泵的研制[J]. 真空与低温, 2013, 19(2): 77-81.
[16] 全国真空技术标准化技术委员会. 真空技术制冷机低温泵:JB/T11081-2011 [S]. 北京:机械工业出版社, 2011.
[17] 赵月帅, 孙立臣, 邵容平, 等. DN1250液氮屏蔽型制冷机低温泵的研制与性能测试[J]. 真空, 2019, 56(1): 1-5.
[18] WELCH K M, ANDEEN B, RIJKE J E D, et al. Recommended practices for measuring the performance and characteristics of closed-loop gaseous helium cryopumps[J]. Journal of Vacuum Science & Technology A: Vacuum Surfaces & Films, 1999, 17(5): 3081-3095.
[19] 罗云, 陈晓怀, 谢远来. 低温泵抽气性能测试平台的抽速测量不确定度研究[J]. 低温与超导, 2009, 37(4): 6-9.
[20] 姬国钊. 分子流态下气体分子在输运过程中分布的研究[D]. 沈阳:东北大学, 2010.
[21] 住友官网[EB/OL]. https://www.shicryogenics.com.
[22] 爱发科官网[EB/OL]. https://www.ulvac-cryo.com.
[23] EDWARDS官网[EB/OL]. https://www.edwardsvacuum.com.
[1] JIANG Yuan-zhen, DENG Jia-liang, HAN Yu-song, WU Yi-feng. Latest Research Progress and Simulation Optimization of Pulse Tube Cryocooler [J]. VACUUM, 2024, 61(4): 35-41.
[2] YU Yan-fei, LI Xiao-gang, HU Xiang-e, CHEN Jin-wen, CHEN Jie-xin. Measurement and Analysis of Pumping Speed of G-M Refrigerator Cryopump Based on the Orifice Method [J]. VACUUM, 2024, 61(3): 20-25.
[3] ZHAO Qian-yu, YU Zhen-hua, LI Heng-lin, GAN Shu-yi, ZHANG Dong-qing. Prediction and Calculation of Vacuum Pump Pumping Speed Curve Based on MATLAB/GUI [J]. VACUUM, 2024, 61(3): 9-12.
[4] DENG Jia-liang, ZENG Huan, YANG Yang, FENG Xin-yu, WU Yi-feng. Performance Test of 200mm Diameter Cryopump for Semiconductor PVD Usage [J]. VACUUM, 2023, 60(5): 75-80.
[5] LIU Shun-ming, SONG Hong, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, SUN Xiao-yang, CHEN Wei-dong, LIU Sheng-jin, OUYANG Hua-fu. Vacuum System for CSNS II Ion Source and LEBT [J]. VACUUM, 2022, 59(4): 22-27.
[6] FENG Xin-yu, YANG yang. Current Status of Refrigerator Cryopump for IC Manufacturing [J]. VACUUM, 2022, 59(2): 42-47.
[7] LIAO Ze-yu, MAO Shi-feng, ZHAO Chang-lian, YE Min-you. DSMC Simulation Study on the Pumping Performance of Linear Mercury Diffusion Pump for Exhaust Gas of Fusion Reactor [J]. VACUUM, 2022, 59(2): 26-31.
[8] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[9] ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Li-yuan, JIANG Zheng-he. Design of Vacuum Pumping System for Electron Beam Melting Furnace [J]. VACUUM, 2021, 58(5): 42-45.
[10] WANG Jun-ru, YU Yao-wei, CAO Bin, ZHUANG Hui-dong, HU Jian-sheng. Design and Research on the Vacuum System of Material Sputtering Experimental Device for the Fusion First Wall Material [J]. VACUUM, 2021, 58(5): 32-36.
[11] YU Jin-jun, DO Xin, LIU Min-qiang. Design of a Compound Molecular Pump With Ultra-high Vacuum and High Pumping Speed [J]. VACUUM, 2021, 58(4): 36-41.
[12] LI Bo, LIU Jun-nan, ZHANG Min, XUE Song, CHEN Ming. Ion Pump Performance Test Used by Shanghai Synchrotron Radiation Facility [J]. VACUUM, 2021, 58(3): 13-16.
[13] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M [J]. VACUUM, 2021, 58(1): 33-37.
[14] ZENG Huan, DENG Jia-liang, SUN Zhi-he. Design of the 250mm Caliber Cryopump [J]. VACUUM, 2020, 57(2): 13-16.
[15] ZHAO Chang-lian, MAO Shi-feng, LIU Peng, QIN Shi-jun, YU Yi, YE Min-you. DSMC Simulation Study of Influence of Nozzle Angle on Pumping Performance of Mercury Diffusion Pump [J]. VACUUM, 2020, 57(2): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .