VACUUM ›› 2024, Vol. 61 ›› Issue (4): 58-64.doi: 10.13385/j.cnki.vacuum.2024.04.11
• Measurement and Control • Previous Articles Next Articles
QIAO Zhong-lu1, WANG Ling-ling1,2, LI Zhi-hui1, LIU Shi-meng1, SONG Qing-zhu1,2, ZHAN Chun-ming2
CLC Number: TB752
[1] 杨乃恒, 巴德纯, 王晓冬, 等.分子泵的世纪回顾与展望[J].真空, 2001, 38(2): 1-14. [2] 杨实禹, 胡志勇, 卢金丽. 涡轮分子泵特性及磁悬浮技术的应用[J]. 通用机械, 2012(1): 86-89. [3] 巴德纯, 王晓东.分子真空泵的理论与实践[M].北京:科学出版社, 2021. [4] 杜景忠. 我国最大的涡轮分子泵在沈阳通过部级鉴定[J].真空, 1986(5): 9. [5] FOMIN M V, CHERNYSHEV O R.Gas flow in a multistage turbomolecular vacuum pump[J]. Russian Engineering Research, 2020, 40: 564-566. [6] LI B, WANG X D, HOU D F, et al.The pumping performance of a multiport hybrid molecular pump and its effect on the inspection performance of a helium mass spectrometer leak detector[J]. Applied Sciences, 2022, 12(13): 6627. [7] 全国真空技术标准化技术委员会.真空技术涡轮分子泵性能参数的测量:GB/T 7774-2007[S]. 北京:中国标准出版社, 2007. [8] ISO 5302:2003. Vacuum technology-Turbomolecular pumps-Measurement of performance characteristicsSO 5302:2003. Vacuum technology-Turbomolecular pumps-Measurement of performance characteristics[S]. Switzerland Gevena: International Standardization Organization Copyright Office, 2003. [9] 全国真空技术标准化技术委员会.真空技术真空泵性能测量标准方法第1部分:总体要求: GB/T 40344.1-2021[S].北京:中国标准出版社, 2021. [10] ISO 21360-1:2020. Vacuum technology-Standard methods for measuring vacuum-pump performance-Part 1:General descriptionSO 21360-1:2020. Vacuum technology-Standard methods for measuring vacuum-pump performance-Part 1:General description[S]. Switzerland Gevena: International Standardization Organization Copyright Office, 2020. [11] ISO 21360-4:2018. Vacuum technology-Standard methods for measuring vacuum-pump performance-Part 4:Turbomlecular pumpsSO 21360-4:2018. Vacuum technology-Standard methods for measuring vacuum-pump performance-Part 4:Turbomlecular pumps[S]. Switzerland Gevena: International Standardization Organization Copyright Office, 2018. [12] 李海涛, 郭美如, 张世伟, 等.真空泵微小抽速测试方法研究进展与分析[J].真空科学与技术学报. 2019, 39(12):1054-1060. [13] 全国真空技术标准化技术委员会.真空技术溅射离子泵性能参数的测量: GB/T 25755-2010[S]. 北京:中国标准出版社, 2010. [14] 全国真空技术标准化技术委员会.真空技术制冷机低温泵: JB/T 11081-2011[S]. 北京:机械工业出版社, 2011. [15] GENG J, WANG X D, GUO M R, et al.Research on measuring method of pumping speed for miniature sputter ion pump[J].Measurement, 2022, 190:110736. [16] HU C D, LANG J Q, XIE Y L, et al.Pumping performance analysis of negative ion based neutral beam injector cryosorption pump prototype[J].Fusion Engineering and design, 2023, 189:113469. [17] 卢耀文, 董云宁, 闫睿, 等.一种基于CF400接口分子泵抽速测试装置[J].真空科学与技术学报. 2020, 40(9):416-424. [18] 卢耀文, 吴端, 陈春, 等.一种10-1~10-10 Pa·m3/s标准气体流量计的设计[J].真空科学与技术学报. 2020, 40(7):674-678. [19] 卢耀文, 董云宁, 杨传森, 等.一种10-5~10-16 Pa·m3/s标准气体流量计的设计[J].真空科学与技术学报. 2021, 41(5):420-678. [20] VEMULAPALLI S, VENKATA S K.Parametric analysis of orifice plates on measurement of flow: a review[J]. Ain Shams Engineering Journal, 2022, 13(3):101639 [21] SORENSEN P, KLINE-SCHODER R, FARLEY R.Wide range vacuum pumps for the SAM instrument on the MSL curiosity rover[C]// The 42nd Aerospace Mechanism Symposium.2014. [22] 梅国强, 齐京, 陈旭, 等.微型溅射离子泵性能测试[J].真空科学与技术学报, 2005, 25(6):449-453. [23] 乔金宇, 马琨岩, 宋龙波, 等.真空泵测试系统不确定度评定[J]. 煤矿机械. 2017, 38(10):76-79. [24] 欧雷. 电离真空计现场校准的测量不确定度评定[J].计测技术. 2015, 35: 165-167. [25] NASIRUDDIN S, SINGH S N.Performance evaluation of an innovative design modification of an orifice meter[J].Flow Measurement and Instrumentation, 2021, 80:101944. [26] JANSEN A.Modellierung der rotortemperatur von turbomolekularpumpen in magnetfeldern mit unterschiedlichen gasflüssen[D]. Germany: Karlsuher Institute of Technology, 2011. [27] HARMS F.Pumping systems at the KATRIN experiment:Overview and current status[D].Reconters Nationales du Réseau des Technologies du vide, 2016. |
[1] | YU Yan-fei, LI Xiao-gang, HU Xiang-e, CHEN Jin-wen, CHEN Jie-xin. Measurement and Analysis of Pumping Speed of G-M Refrigerator Cryopump Based on the Orifice Method [J]. VACUUM, 2024, 61(3): 20-25. |
[2] | LIU Shun-ming, SONG Hong, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, SUN Xiao-yang, CHEN Wei-dong, LIU Sheng-jin, OUYANG Hua-fu. Vacuum System for CSNS II Ion Source and LEBT [J]. VACUUM, 2022, 59(4): 22-27. |
[3] | LI Bo, HOU De-feng, WANG Xiao-dong, BA De-chun. Influence of Turbine Stage Parameters of Composite Molecular Pump on the Performance of Helium Mass Spectrometer Leak Detector [J]. VACUUM, 2022, 59(4): 1-7. |
[4] | LI Bo, HOU De-feng, WANG Xiao-dong, BA De-chun. Influence of the Position of Molecular Pump Medium Detection Port on the Performance of Helium Mass Spectrometer Leak Detector [J]. VACUUM, 2021, 58(6): 1-7. |
[5] | YU Jin-jun, DO Xin, LIU Min-qiang. Design of a Compound Molecular Pump With Ultra-high Vacuum and High Pumping Speed [J]. VACUUM, 2021, 58(4): 36-41. |
[6] | LIU Guo-ting, CHENG Yong-jun, CHEN Lian, WANG Yu-jie, SUN Wen-jun, DONG Meng, WU Cheng-yao, SONG Yi, WEI Ning-fei. Study on the Method of Indirectly Measuring the Vacuum Degree of Seals by Using Leakage Rate [J]. VACUUM, 2021, 58(3): 59-64. |
[7] | NING Yuan-tao, JING Jia-rong, ZHANG Yan-shun, HUANG Tao, CHEN Qi. Optimization and Evaluation of Compound Molecular Pump Based on DFMA [J]. VACUUM, 2020, 57(4): 41-45. |
[8] | NING Yuan-tao, HUANG Tao, CHEN Qi, ZHANG Yan-shun , QI Xiao-jun. Optimization design of high-speed shafting for molecular pump based on finite-element method [J]. VACUUM, 2019, 56(1): 11-15. |
|