欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (2): 12-21.doi: 10.13385/j.cnki.vacuum.2025.02.02

• Vacuum Technology Application • Previous Articles     Next Articles

Research Progress on Process and Standardization of Additive Manufacturing Superalloys

WANG Jie1, ZHANG Jinglun2, ZHANG Zenghai1, E Dongmei1, WANG Lingling1, LIU Shimeng1, ZHAN Chunming1, ZHANG Pixian1, SONG Qingzhu1, WU Siwei3   

  1. 1. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    2. China Iron & Steel Research Institute Group Co., Ltd., Beijing 100081, China;
    3. The State Key Lab. of Rolling and Automation, Northeastern University, Shenyang 110819, China
  • Received:2024-07-24 Online:2025-03-25 Published:2025-03-24

Abstract: Based on the current research progress of laser additive manufacturing technology on superalloy at home and abroad, the preparation methods of superalloy powders and the influence of recycling and reuse on powder properties are reviewed. The application of simulation calculation technique in superalloy additive manufacturing process and material design is discussed. The common defects and optimization methods of additive manufacturing of superalloy are summarized. Finally, the standardization process of superalloy additive manufacturing is introduced.

Key words: superalloy, additive manufacturing, powder reuse, process optimization, standardization

CLC Number:  TF306;TB35

[1] REED R C.高温合金基础与应用[M]. 何玉怀,赵文侠,曲士昱, 译. 北京:机械工业出版社,2016.
[2] SARKAR R, CHEN B, FITZPATRICK M, et al.Additive manufacturing-based repair of In718 superalloy and high-cycle fatigue assessment of the joint[J]. SSRN Electronic Journal, 2022,60: 103276.
[3] 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9): 684-688.
[4] 全国增材制造标准化技术委员会. 增材制造工艺分类及原材料:GB/T 35021-2018[S]. 北京:中国标准出版社,2019.
[5] MURRAY S P, PUSCH K M, POLONSKY A T, et al.A defect-resistant Co-Ni superalloy for 3D printing[J]. Nature communications, 2020,11(1):4975.
[6] EKOĞLU E, O’BRIEN A D, LIU J, et al. Strengthening additively manufactured Inconel 718 through in-situ formation of nanocarbides and silicides[J]. Additive Manufacturing, 2023,67:103478.
[7] PEACHEY D D, CARTER C P, GARCIA-JIMENEZ A, et al.Directional recrystallization of an additively manufactured Ni-base superalloy[J]. Additive Manufacturing. 2022, 60: 103198.
[8] NASA. NASA’s new material built to withstand extreme conditions[EB/OL]. (2022-04-12) [2024-05-08]. https://www.nasa.gov/aeronautics/nasas-new-material-built-to-withstand-extreme-conditions/.
[9] GE Aerospace. GE aerospace T901 engines accepted by U.S. army in support of improved turbine engine program[EB/OL]. (2023-10-13) [2024-05-08]. https://www.geaerospace.com/news/press-releases/defense-engines/ge-aerospace-t901-engines-accepted-us-army-support-improved-turbine.
[10] 3D Systems. DMP Flex 350、DMP Flex 350 Dual and DMP Flex 350 Triple[EB/OL].[2024-07-23]. https://cn.3dsystems.com/3d-printers/dmp-flex-350?ind=turbomachinery.
[11] SUN Z, MA Y, PONGE D, et al.Thermodynamics-guided alloy and process design for additive manufacturing[J]. Nature communications. 2022,13(1):4361.
[12] EOS. Nickel alloys[EB/OL].[2024-07-23]. https://www.eos.info/en-us/metal-solutions/metal-materials/nickel-alloys#eos-nickelalloy-hx.
[13] 王华明. 大型金属构件增材制造技术对重大装备结构、材料和制造业的影响[P/OL]. [2024-05-10].https://www.kczg.org.cn/yuanshi/detail?id=113045.
[14] 国家增材制造创新中心.“利器”出鞘!RC系列SLM设备助力科研院校结新果![EB/OL]. (2022-10-27) [2024-05-08]. https://www.niiam.com/2022/10/27/.
[15] 铂力特.智能制造再升级,BLT-MES 2.0正式上线[EB/OL]. (2023-09-09) [2024-05-10]. https://www.xa-blt.com/newslist/.
[16] TAMURA R, OSADA T, MINAGAWA K, et al.Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy[J]. Materials & Design, 2021, 198:109290.
[17] DUNKLEY J J.Metal powder atomisation methods for modern manufacturing[J]. Johnson Matthey Technology Review, 2019, 63(3):226-232.
[18] DUNKLEY J J, TELFORD B.Control of 'satellite' particles in gas atomisation[C]//World Congress on Powder Metallurgy and Particulate Materials: Advances in Powder Metallurgy & Particulate Materials. Orlando, USA, 2002.
[19] DUNKLEY J J.Hot gas atomization: economic and engineering aspects[C]// World Congress and Exhibition on Powder Metallurgy. Vienna, Austria, 2004.
[20] BECKERS D, ELLENDT N, FRITSCHING U, et al.Impact of process flow conditions on particle morphology in metal powder production via gas atomization[J]. Advanced Powder Technology, 2020 ,31(1):300-311.
[21] HANN D, STRAŽIŠAR J. Influence of particle size distribution, moisture content, and particle shape on the flow properties of bulk solids[J]. Instrumentation Science and Technology. 2007,35(5):571-584.
[22] HIGASHI M, KANNO N.Effect of initial powder particle size on the hot workability of powder metallurgy Ni-based superalloys[J]. Materials & Design, 2020,194:108926.
[23] ZERWAS A A, DA SILVA F C, GUARDANI R, et al. Impact of the gas atomizer nozzle configuration on metal powder production for additive manufacturing[J]. Powder Technology, 2024, 443:119974.
[24] ZHONG C L, CHEN J, LINNENBRINK S, et al.A comparative study of Inconel 718 formed by high deposition rate laser metal deposition with GA powder and PREP powder[J]. Materials & Design, 2016,107:386-392.
[25] RUAN G, LIU C, QU H, et al.A comparative study on laser powder bed fusion of IN718 powders produced by gas atomization and plasma rotating electrode process[J]. Materials Science and Engineering: A, 2022, 850:143589.
[26] 杨洪涛,卢志辉,孙志杨,等.等离子旋转电极雾化制粉设备国内研究现状[J].粉末冶金工业,2021,31(4):88-93.
[27] DEBROY T, MUKHERJEE T, MILEWSKI J O, et al.Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 2019,18(10):1026-1032.
[28] LI J, LIU W, SHEN J, et al.Research progress of the metal powder reuse for powder bed fusion additive manufacturing technology[J]. Powder Technology, 2024, 441: 119815.
[29] MOGHIMIAN P, POIRIÉ T, HABIBNEJAD-KORAYEM M, et al.Metal powders in additive manufacturing: A review on reusability and recyclability of common titanium, nickel and aluminum alloys[J]. Additive Manufacturing, 2021,43:102017.
[30] WARNER J H, RINGER S P, PROUST G.Strategies for metallic powder reuse in powder bed fusion: a review[J]. Journal of Manufacturing Processes, 2024, 110:263-690.
[31] GRUBER H, HENRIKSSON M, HRYHA E, et al.Effect of powder recycling in electron beam melting on the surface chemistry of alloy 718 powder[J]. Metallurgical and Materials Transactions A, 2019,50:4410-4422.
[32] ROCK C, LEDFORD C, GARCIA-AVILA M, et al.The influence of powder reuse on the properties of nickel super alloy ATI 718™ in laser powder bed fusion additive manufacturing[J]. Metallurgical and Materials Transactions B, 2021,52:676-688.
[33] KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al.Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia,2016, 108: 36-45.
[34] WANG D, WU S B, FU F, et al.Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J]. Materials & Design,2017, 117:121-130.
[35] STRONDL A, LYCKFELDT O, BRODIN H, et al.Characterization and control of powder properties for additive manufacturing[J]. Jom, 2015,67:549-554.
[36] LEBAN M B, HREN M, KOSEC T.The microstructure, mechanical and electrochemical properties of 3D printed alloys with reusing powders[J].Scientific Reports, 2023, 13: 3245.
[37] ARDILA L C, GARCIANDIA F, GONZÁLEZ-DÍAZ J B, et al. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting[J]. Physics Procedia, 2014,56:99-107.
[38] 宋巍, 朱玉平, 梁静静, 等. 粉末循环使用对激光选区熔化GH4169合金组织及拉伸行为的影响[J]. 中国激光, 2024, 51(10): 171-180.
[39] CHEN J, XU J, SEGERSÄLL M, et al. Cyclic deformation behavior of additive-manufactured IN738LC superalloys from virgin and reused powders[J]. Materials, 2022,15(24):8925.
[40] SOLTANI-TEHRANI A, CHEN P, KATSARELIS C, et al.Mechanical properties of laser powder directed energy deposited NASA HR-1 superalloy: effects of powder reuse and part orientation[J]. Thin-Walled Structures, 2023,185:110636.
[41] PACCOU E, MOKHTARI M, CLÉMENT KELLER, et al. Investigations of powder reusing on microstructure and mechanical properties of Inconel 718 obtained by additive manufacturing[J]. Materials Science and Engineering: A, 2021, 828:142113.
[42] YI J H, KANG J W, WANG T J, et al.Effect of laser energy density on the microstructure, mechanical properties, and deformation of Inconel 718 samples fabricated by selective laser melting[J]. Journal of Alloys & Compounds, 2019, 786:481-488.
[43] ZHU L, XU Z F, LIU P, et al.Effect of processing parameters on microstructure of laser solid forming Inconel 718 superalloy[J]. Optics & Laser Technology, 2018,98: 409-415.
[44] NIE P, OJO O A, LI Z.Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J].Acta Materialia, 2014, 77:85-95.
[45] XIAO W J, XU Y X, XIAO H, et al.Investigation of the Nb element segregation for laser additive manufacturing of nickel-based superalloys[J]. International Journal of Heat and Mass Transfer, 2021,180:121800.
[46] RAVICHANDER B B, RAHIMZADEH A, FARHANG B, et al.A prediction model for additive manufacturing of Inconel 718 superalloy[J]. Applied Sciences, 2021 ,11(17):8010.
[47] SONG W, YANG J, LIANG J, et al.A new approach to design advanced superalloys for additive manufacturing[J]. Additive Manufacturing, 2024, 84: 104098.
[48] TANG Y T, PANWISAWAS C, GHOUSSOUB J N, et al.Alloys-by-design: application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202:417-436.
[49] KOU S.A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88:366-374.
[50] 李毅. Inconel 625合金SLM成形的仿真模拟及其热处理工艺[D]. 哈尔滨:哈尔滨理工大学, 2019.
[51] 赵宇辉, 赵吉宾, 王志国, 等. Inconel 625镍基高温合金激光增材制造内应力控制方式研究[J]. 真空, 2020, 57(3): 73-79.
[52] GUO C, LI G, LI S, et al.Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition[J]. Nano Materials Science, 2023, 5(1):53-77.
[53] NASRALLA K, SHIHAB S K, MAHMOUD A K, et al.Estimation of induced residual stresses and corrosion behavior of machined Inconel 718 superalloy: 3D-FE simulation and optimization[J]. International Journal of Computational Materials Science and Engineering, 2022, 11(1): 2150028.
[54] EMANUELLI L, DEIRMINA F, PELLIZZARI M.Heat treatment behaviour of IN718 superalloy fabricated by laser-powder bed fusion[J]. Materials Characterization, 2023, 199:112788.
[55] CHUA Z Y, AHN I H, MOON S K.Process monitoring and inspection systems in metal additive manufacturing: Status and applications[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4:235-245.
[56] LUPI F, PACINI A, LANZETTA M.Laser powder bed additive manufacturing: a review on the four drivers for an online control[J]. Journal of Manufacturing Processes, 2023,103:413-429.
[57] YI L, SHOKRANI A, BERTOLINI R, et al.Optical sensor-based process monitoring in additive manufacturing[J]. Procedia CIRP, 2022,115:107-112.
[58] 张渝, 侯慧鹏, 雷力明. 高温合金增材制造标准分析[J].材料导报, 2017, 31(增刊1): 62-65.
[59] 丁红瑜, 武姝婷, 袁康, 等.增材制造国内外标准研究进展[J]. 中国材料进展, 2020, 39(12): 955-961.
[60] 张洪萍, 罗凯文, 张天宇, 等.国内外增材制造发展政策及标准建设研究[J].中国高新科技, 2022, 117(9): 104-105.
[61] 国家标准化管理委员会. 国家技术标准创新基地:以标准化助力高技术创新,促进高水平开放, 引领高质量发展[EB/OL]. (2021-08-23) [2024-05-15]. https://www.sac.gov.cn/jdbnhbz/bzgs/art/2021/art_960efcb891cc452ca1b08c9db17d8c5d.html.
[1] CHEN Ming, LI Xiangcai, ZHANG Xiaomin, HUANG Shuo, WANG Chong, HU Jun. Effect of P on the as Cast Microstructure and Mechanical Properties of Nickel Based Superalloy [J]. VACUUM, 2025, 62(2): 91-99.
[2] XU Ping. Research on Melting Methods of Nickel-Based Superalloy [J]. VACUUM, 2025, 62(1): 72-77.
[3] CHEN Cheng, ZHU Ming-liang, LI Ming-yue, HE Zhen-feng, WANG Zhi-guo, HE Chen. Eddy Current Testing Simulation for Surface Defects for Laser Melting Deposition [J]. VACUUM, 2024, 61(4): 96-101.
[4] ZHANG Wan-fu, YE Chao, LI Qiang, LI Jun, WANG De-hong, LUO Jun-yi. Manufacturing Technology for Low O/N Content Ni-based Superalloy K417G [J]. VACUUM, 2023, 60(6): 66-70.
[5] WAN Xu-jie, ZHANG Hua-xia, ZHANG Feng-xiang, GAO Hong-ru, MA Bao-hong, ZHAO Xin-ying, LIU Kun. Study on the Surface Erosion of Refractory Materials During the Superalloy Vacuum Melting Casting Process [J]. VACUUM, 2023, 60(5): 98-101.
[6] ZHANG Feng-xiang, MA Guo-hong, WAN Xu-jie, MA Xiu-ping, WU Ke-han, ZHANG Hua-xia. Cause Analysis on the Surface Porosity in Superalloy Ingots During Vacuum Casting [J]. VACUUM, 2023, 60(4): 80-84.
[7] ZHANG Feng-xiang, ZHANG Peng, LI Yi, MA Xiu-ping, LIU Dong-fang, WAN Xu-jie, ZHANG Hua-xia. Interface Reaction Between a Zr Containing Superalloy and Crucible Refractory Material [J]. VACUUM, 2023, 60(3): 80-85.
[8] FENG Jun-xiao, ZUO Ye, WANG Yong, ZHANG Zeng-hai, TENG Long, SHEN Zi-wei, JIN He, SONG Jing-si, ZHANG Zhe-kui. Research, Development Prospect of Vacuum Atomization Powdering Technology [J]. VACUUM, 2022, 59(6): 87-92.
[9] LIU Xiao-gong, JIANG Nan, HAO Qi-zan, LUO Liang, SHI Zhen-xue, LUO Yu-shi. Experimental Research on Casting Dimension Effect of Single Crystal Superalloy [J]. VACUUM, 2022, 59(3): 80-85.
[10] WU Fan, LIN Bo-chao, QUAN Yin-zhu, , CHEN Wei, YANG Yang. Review on Equipment and Application of Electron-beam Based Additive Manufacturing [J]. VACUUM, 2022, 59(1): 79-85.
[11] MA Yi-Gang, LI Zhi-hui. Application of Ultra-high and High Vacuum Technology [J]. VACUUM, 2021, 58(4): 98-102.
[12] XU Hai-ying, WANG Zhuang, SANG Xing-hua, YANG Bo, PENG Yong. Development of the Gas Discharger EB Gun of Electron Beam Coaxial Wire [J]. VACUUM, 2021, 58(2): 76-81.
[13] SONG Jing-si, WANG Ting, LI Xiu-zhang, CHEN Jiu-qiang, ZHANG Zhe-kui. Study on the Structure Layout of a Large Vacuum Precision Casting Furnace [J]. VACUUM, 2021, 58(2): 31-36.
[14] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[15] ZHAO Ji-bin, LI Lun, ZHOU Bo, TIAN Tong-tong. Direction-parallel Filling Trajectory Generation Method for Sliced Profile in Additive Manufacturing [J]. VACUUM, 2020, 57(3): 89-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .