欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (4): 54-59.doi: 10.13385/j.cnki.vacuum.2023.04.10

• Vacuum Acquisition System • Previous Articles     Next Articles

Technology Review of Vacuum Micropumps

LI Xing-hui, DU Ting, HAN Pan-yang, CHEN Hai-jun, CAI Jun, FENG Jin-jun   

  1. National Key Laboratory of Science and Technology on Vacuum Electronics, Beijing Vacuum Electronics Research Institute, Beijing 100015, China
  • Received:2022-09-05 Online:2023-07-25 Published:2023-07-26

Abstract: Vacuum micropumps are of great importance for the vacuum packaging of micro-electro-mechanical systems(MEMS)and vacuum microelectronics devices. Based on the operating principle and process realization, the microminiaturization feasibility of common traditional vacuum pumps is analyzed. The developments of vacuum micropumps including membrane pump, Knudsen pump, vapor-jet/diffusion pump and ion sorption pump are introduced, and the technical difficulties are summarized. The results show that although the vacuum micropumps have obvious decrease in exhausting performances and reliabilities compared with their macro predecessors, they are still necessary for the portable and high-vacuum required microsystems with the merits of low-power consumption and ease of integration.

Key words: micro-electro-mechanical system, vacuum microelectronics device, vacuum pump, micro packaging, microminiaturization

CLC Number:  TN305

[1] MENZ W, MOHR J, PAUL O.Microsystem technology[M]. Hoboken, NJ: Wiley-VCH, 2001.
[2] DZIUBAN J A, MRÓZ J, SZCZYGIELSKA M, et al. Portable gas chromatograph with integrated components[J]. Sensors and Actuators A: Physical, 2004, 115(2/3): 318-330.
[3] MALCOLM A, WRIGHT S, SYMS R R A, et al. Miniature mass spectrometer systems based on a microengineered quadrupole filter[J]. Analytical Chemistry, 2010, 82(5): 1751-1758.
[4] SOMEREN B, BRUGGEN M J, ZHANG Y, et al.Multibeam electron source using MEMS electron optical components[C]//Journal of Physics: Conference Series. International MEMS Conference. Singapore: IOP, 2006, 34: 1092-1097.
[5] WELSH III W C. Vacuum and hermetic packaging of MEMS using solder[D]. Michigan, USA: University of Michigan, 2008.
[6] 单睿, 齐通通, 黎秉哲, 等. 非蒸散型薄膜吸气剂的研究现状及应用进展[J]. 功能材料, 2018, 49(5): 5049-5055.
[7] 周超, 李得天, 周晖, 等. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[8] BESHARATIAN A.A scalable, modular, multistage, peristaltic, electrostatic gas micropump[D]. Michigan, USA: University of Michigan, 2013.
[9] 王晓东, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2006.
[10] DÖPPER J, CLEMENS M, EHRFELD W, et al. Micro gear pumps for dosing of viscous fluids[J]. Journal of Micromechanics and Microengineering, 1997, 7: 230-232.
[11] JOHNSON M C, MCNAMEE M R, ANDINK J L. Miniature turbomolecular pump: US06412173B1[P].2002- 07-02.
[12] DODSON B. DARPA program develops world′s smallest vacuum pumps with big potential[EB/OL].[2022-08-25]http://www.gizmag.com/darpa-mems-smallest-vacuum-pumps/27883/.
[13] GRZEBYK T.MEMS vacuum pumps[J]. Journal of Microelectromechanical Systems, 2017, 26(4): 705-717.
[14] WILCOX J Z, GEORGE T, FELDMAN J.Miniature ring-orbitron getterion vacuum pumps[J]. NASA Tech Brief, 1999, 23(9): 1-2.
[15] MCNAMARA S, GIANCHANDANI Y B.On-chip vacuum generated by a micromachined Knudsen pump[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 741-746.
[16] WOIAS P.Micropumps-past, progress and future prospects[J]. Sensors and Actuators B: Chemical, 2005, 105(1): 28-38.
[17] SHARMA V.MEMS micropump for a micro gas analyzer[D]. Cambridge, USA: Mass Inst Technol, 2009.
[18] NEWTON E B.Design of curved electrodes to enable large stroke-lowvoltage micro actuators[D]. Cambridge, USA: Mass Inst Technol, 2016.
[19] WIJNGAART W V D, ASK H, ENOKSSON P, et al. A high-stroke, high-pressure electrostatic actuator for valve applications[J]. Sensors and Actuators A: Physical, 2002, 100(2/3): 264-271.
[20] OH K W, AHN C H.A review of microvalves[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 13-39.
[21] HAN J, YEOM J, MENSING G, et al.Characteristics of electrostatic gas micro-pump with integrated polyimide passive valves[J]. Journal of Micromechanics and Microengineering, 2012, 22(9): 095007.
[22] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2006.
[23] 高海波. 基于扩散泵与射流泵原理的微小型真空泵的研究[D]. 上海: 华东理工大学, 2013.
[24] DOM M, MUELLER J.A micromachined vapor jet pump[J]. Sensors and Actuators A: Physical, 2005, 119(2): 462-467.
[25] DOM M, MUELLER J.Design,fabrication,and characterization of a micro vapor-jet vacuum pump[J]. Journal of Fluids Engineering, 2007, 129(10): 1339-1345.
[26] KNUDSEN M, PARTINGTON J R.The kinetic theory of gases:some modern aspects[M]. New York, USA: Wiley, 1950.
[27] YOUNG M, HAN Y L, MUNTZ E P, et al.Characterization and optimization of a radiantly driven multi-stage Knudsen compressor[C]//Proc IMECE ASME Int Mech Eng Cong Expo. Washington DC, USA: AIP, 2003.
[28] GUPTA N K, GIANCHANDANI Y B.A high-flow Knudsen pump using apolymer membrane: performance at and below atmospheric pressures[C]//2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems(MEMS). Hong Kong, China: IEEE, 2010: 1095-1098.
[29] GUPTA N K, GIANCHANDANI Y B.Thermal transpiration in zeolites: a mechanism for motionless gas pumps[J]. Applied Physics Letters, 2008, 93(19): 193511.
[30] AN S, GUPTA N K, GIANCHANDANI Y B.A Si-micromachined 162-stage two-part Knudsen pump for on-chip vacuum[J]. Journal of Microelectromechanical System, 2013, 23(2): 406-416.
[31] AN S, QIN Y, GIANCHANDANI Y B.A monolithic high-flow Knudsen pump using vertical Al2O3 channels in SOI[J]. Journal of Microelectromechanical Systems, 2015, 24(5): 1606-1615.
[32] GREEN S R, MALHOTRA R, GIANCHANDANI Y B.Sub-Torr chip-scale sputter-ion pump based on a penning cell array architecture[J]. Journal of Microelectromechanical Systems, 2013, 22(2): 309-317.
[33] KOOPS H W R. A miniaturized orbitron pump for MEMS applications[C]//2005 International Vacuum Nanoelectronics Conference. Oxford, UK: IEEE, 2005, 58(38): 38-42.
[34] GRZEBYK T, GÓRECKA-DRZAZGA A, DZIUBAN J A. Glow-discharge ion-sorption micropump for vacuum MEMS[J]. Sensors and Actuators A: Physical, 2014, 208: 113-119.
[35] GRZEBYK T, KNAPKIEWICZ P, SZYSZKA P, et al.MEMS ion-sorption high vacuum pump[C]//Journal of Physics: Conference Series. PowerMEMS 2016. Paris: IOP, 2016, 773: 012047.
[36] GRZEBYK T, GÓRECKA-DRZAZGA A, DZIUBAN J A. Low vacuum MEMS ion-sorption micropump[J]. Procedia Engineering, 2016, 168: 1593-1596.
[37] BASU A, PEREZ M A, VELÁSQUEZ-GARCÍA L F. Nanostructured silicon field emitter array-based high-vacuum magnetic-less ion pump for miniaturized atomic spectroscopy sensors[C]//2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems. Anchorage, AK, USA: IEEE, 2015: 1021-1024.
[38] JANG D.Carbon nanotube-based field ionization vacuum pump[D]. Cambridge, USA: Mass Inst Technol, 2012.
[1] LI Ping-chuan, XU Li, ZHAO Jie, ZHANG Fan, XIONG Si-wei, JIAN Yi, ZHANG Zheng-hao, TANG De-li. Numerical Simulation and Experimental Research on Miniaturized Anode Layer Thruster [J]. VACUUM, 2023, 60(4): 36-41.
[2] REN Chang-qing, XU Fa-jian, HUANG Zhi-ting, YUAN Zheng, ZHANG Ze-sheng. Research on Screw Dry Vacuum-Compression System with Scene as Design Input [J]. VACUUM, 2023, 60(3): 46-50.
[3] DU Shan-guo, LI Bo, LI Qiang, XU You-min. Design and Optimization of Dust Removal System for Mechanical Vacuum Pump [J]. VACUUM, 2023, 60(3): 51-54.
[4] LI Zheng-qing, WANG Xiao-jun, HAN Xian-hu, CAI Yu-hong, LI Xiao-jin, YANG Jian-bin. Design and Machining of Circular Rotor Profiles for Roots Vacuum Pumps [J]. VACUUM, 2023, 60(1): 36-41.
[5] SUN Kun, LI Kun, WANG Sen-hui, WANG Cheng, WANG Long, LAI Yong-bin. Design and Counter Measure of Screw Vacuum Pump under “Double Carbon” Vision [J]. VACUUM, 2023, 60(1): 57-61.
[6] ZHANG Bao-fu, YU Yang, GAO Xun-yi, LI Jin-jian, WANG Jian-guo, WANG Ling-ling. Application of High Differential Pressure Roots Pump Combination Pumping System for Large Vacuum Distillation Deep Cut Unit [J]. VACUUM, 2022, 59(5): 45-49.
[7] LIU Ming-kun, LI Dan-tong, XING Zi-wen. Research Progress of the Inner Compression Rotor Structure of Twin-Screw Vacuum Pumps [J]. VACUUM, 2022, 59(4): 28-32.
[8] ZHAO Xi-hao, ZHAO Li-zhuang, WANG Jun, LI Xue-qin, CUI Feng, WANG Zeng-li, GENG Mao-fei. Design and Analysis of New Sinusoidal Helical Screw Rotor for Twin-Screw Vacuum Pump [J]. VACUUM, 2022, 59(3): 1-6.
[9] HU Rong-xing, ZHANG Heng, YU Qing-zhou, SHU Xiao-dong, GAN Shu-yi. Development of Virtual Vacuum Acquisition Device Performance Test System Based on Unity3D Platform [J]. VACUUM, 2022, 59(3): 20-24.
[10] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[11] QI Da-wei, LI Wei-hua, LI Chuan-xu, WU Bin, CHEN De-jiang, TANG Zhi-gong. Pneumatic Design of Centrifugal Vacuum Pump for Large Wind Tunnel [J]. VACUUM, 2021, 58(4): 49-53.
[12] MA Yi-Gang, LI Zhi-hui. Application of Ultra-high and High Vacuum Technology [J]. VACUUM, 2021, 58(4): 98-102.
[13] LV Qian-qian, SUN Zhen-chuan, ZHOU Jian-jun, YANG Zhen-xing, CHEN Rui-xiang, YOU Hui-jie. Laboratory Experiment on the System Performance of Low Vacuum Piping [J]. VACUUM, 2021, 58(3): 7-12.
[14] ZHANG Long-he. Analysis and Treatment of Common Faults of Oil Sealed Rotary Vacuum Pump [J]. VACUUM, 2021, 58(3): 17-22.
[15] LIU Meng, WU Jian-long, ZHAO Teng, ZHU Lang-tao, CAO Hai-ling, ZHANG Ming, MA Zheng-feng, ZHANG Mi, FU Deng-feng. Research and Application of Remote Fault Diagnosis System for Mechanical Vacuum Pump [J]. VACUUM, 2021, 58(2): 48-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .