欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 90-95.doi: 10.13385/j.cnki.vacuum.2024.03.16

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Research Progress of Influence of Multi-field Coupling on Inclusion Removal in Vacuum Continuous Casting Tundish

MA Bao-hong1, DUAN Hai-xia1, DU Xue-feng1, SHAO Yu-song1, LI Zhen-kai2   

  1. 1. School of Equipment Engineering, Shenyang Ligong University, Shenyang 110168, China;
    2. Liaoning Coastal Precision Equipment Co., Ltd., Yingkou 115009, China
  • Received:2023-11-27 Published:2024-06-04

Abstract: The temperature gradient and liquid steel flow in the tundish of continuous casting in the vacuum induction melting process play an important role in the removal of solid inclusions, which directly affect the purity of liquid steel. Based on the analysis of the current situation of numerical simulation of temperature field, flow field and stress field coupling in continuous casting tundish, the numerical simulation of inclusion removal under multi-field coupling is summarized. The heat flow coupling, fluid solid coupling and fluid solid thermal coupling simulation methods are introduced. The numerical simulation of inclusion removal under fluid-thermostructure coupling is proposed. A reasonable combination of flow control devices and a selection of resistant materials can improve the quality of liquid steel.

Key words: vacuum, multi-field coupling, tundish, inclusion removal

CLC Number:  TF133

[1] 刘建民, 蒋涛, 范金席, 等. 真空感应炉冶炼钢锭常见缺陷成因分析及解决措施[J]. 真空, 2015(3): 49-53.
[2] Xuan C J, Persson E S, Sevastopolev R, et al.Motion and detachment behaviors of liquid inclusion at molten steel-slag interfaces[J]. Metallurgical and Materials Transactions, 2019, 66(7): 2084-2088.
[3] 刘逸波, 杨健. 中间包流场控制技术的进展[J]. 连铸, 2021, 34(5): 12-33.
[4] 姜彩伟, 刘建民, 胡显军. 真空感应炉冶炼铁铬铝合金铸锭常见缺陷成因分析及改善措施[J]. 真空, 2019, 56(2): 74-77.
[5] 祁松松. CFETR氦冷固态包层热工水力分析及优化[D]. 合肥: 合肥工业大学, 2015.
[6] 王建, 张淑兰, 陈文智, 等. 不同感应中间包留钢液位下受钢过程中钢液流场的数值模拟[J]. 热加工工艺, 2018, 47(1): 100-104.
[7] 张彩军, 李建生, 程翠花, 等. 六流中间包钢液流动及传热过程的耦合数值模拟[J]. 钢铁钒钛, 2008, 29(2): 50-54.
[8] 徐婷, 张立华, 李晓谦, 等. 稳恒磁场下中间包温度场流场耦合数值模拟[J]. 特种铸造及有色合金, 2015, 35(4): 365-369.
[9] 卢金霖, 张东升, 罗志国, 等. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12):1432-1438.
[10] SINGH V, PAL A R, PANIGRAHI P.Numerical simulation of flow-induced wall shear stress to study a curved shape billet caster tundish design[J]. ISIJ International,2008,48(4):231-238.
[11] WARZECHA M, TOMASZ M, PIOTR W, et al.Experimental and numerical investigations on non-metallic inclusions distribution in billets casted at a multi-strand continuous casting tundish[J]. ISIJ International,2013,53(11):3421-3425
[12] TAKAHASHI K, MAKOTO A, TOSHIO I.Numerical investigation of unsteady molten steel flow and inclusion behavior in the tundish in the ladle change period[J]. ISIJ International, 2014, 54(2): 45-52.
[13] WANG Q, TAN C, HUANG A, et al.Numerical simulation on refractory wear and inclusion formation in continuous casting tundish[J]. Metallurgical and Materials Transactions B, 2021, 52: 1344-1356.
[14] 王海. 两流T型连铸中间包结构优化研究[D]. 沈阳:东北大学, 2011.
[15] WANG Q, LIU Y, HUANG A, et al.CFD investigation on influence of orifice geometry on micro-scale inclusion movement[J]. Powder Technology, 2020, 367: 358-375.
[16] 赵丹婷, 刘爱强, 仇圣桃, 等. 不同流量下单流中间包水力学模拟试验[J]. 铸造技术, 2016, 37(8): 1693-1697.
[17] MERDER T, PIEPRZYCA J, WARZECHA M, et al.Evolution of the numerical model describing the distribution of non-metallic inclusions in the tundish[J]. Materials, 2021,14(9):2229.
[18] 赵方毅, 王颖, 陈卫强. 双流板坯连铸中间包流动与温度耦合的数值模拟[C]//第七届(2009)中国钢铁年会论文集(上), 2009: 1472-1475.
[19] 裴晓航. 连铸中间包内流动、传热以及夹杂物聚集的模拟研究[D]. 马鞍山:安徽工业大学, 2017.
[20] 陈希青, 肖红, 王璞, 等. 双通道感应加热中间包的三维磁流热耦合模型[J]. 钢铁, 2021, 56(6): 48-58.
[21] WANG T L, ZHANG Y Q,PENG H S, et al.Mathematical Model for Growth and Removal of Inclusion in a Multi-tuyere Ladle during Gas-stirring[J]. ISIJ International, 2005, 45(3): 331-337.
[1] ZHANG Pi-xian, ZHANG Yi-chen, ZHAN Chun-ming, JIN Wei-da. Application and Development Trend of Dry Vacuum Pump in the Field of Semiconductor and New Energy [J]. VACUUM, 2024, 61(3): 1-8.
[2] ZHAO Qian-yu, YU Zhen-hua, LI Heng-lin, GAN Shu-yi, ZHANG Dong-qing. Prediction and Calculation of Vacuum Pump Pumping Speed Curve Based on MATLAB/GUI [J]. VACUUM, 2024, 61(3): 9-12.
[3] HU Hao, LI Kai, LIU Hong-tao, SHAO Qing, HAN Tian, YU Miao, LIU Hang, LI Hao-chen. Application of Vacuum Technology in High-temperature Superconducting Electrodynamic Suspension Transportation System [J]. VACUUM, 2024, 61(3): 105-109.
[4] LI Xiao-jin, LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LIU Xiao-wen. A Design Method Based on TRIZ Theory to Enhance the Base Pressure of Roots Vacuum Pump [J]. VACUUM, 2024, 61(2): 62-67.
[5] LI Fu-song, WANG Wen-jun, LIN Wei-jian, DOU Xuan-kai, CHEN Bin, ZHAO Yi. Design on Oil Gas Separation System of Oil Injection Screw Vacuum Pump [J]. VACUUM, 2024, 61(2): 73-77.
[6] LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LI Xiao-jin, LIU Xiao-wen, WANG Yi. Design and Analysis of a Rotor Profile for Roots Vacuum Pumps with an Elliptical Waist [J]. VACUUM, 2024, 61(1): 47-51.
[7] HE Tian-yi, YUE Xiang-ji, ZHANG Zhi-jun, BA De-chun, FENG Xiao-rong, YANG Fan. Numerical Simulation of Gas Flow in a Fixed Pitch Screw Vacuum Pump [J]. VACUUM, 2024, 61(1): 52-57.
[8] ZHANG Wan-fu, LI Qiang, LI Jun, LIU Jia-xue, WANG De-hong, LUO Jun-yi. Analysis and Optimization Applications of Vacuum System for VIDP Furnace During Special Alloy Manufacturing Process [J]. VACUUM, 2024, 61(1): 58-63.
[9] LIU Zhong-bo. Application of Vacuum System in Simulating Low-pressure Area Environment on Martian Surface [J]. VACUUM, 2024, 61(1): 64-67.
[10] YAN Chao, ZHANG Tao, JIA Zi-zhao, CHENG Cheng, XU Wen-qiang. Development of Feeding and Casting Ingot Dragging Device for Electron Beam Melting [J]. VACUUM, 2024, 61(1): 78-82.
[11] ZHENG Yi-ming, WANG Xu-di, WU Jun. Research Progress in Quantization of Vacuum Metrology [J]. VACUUM, 2023, 60(6): 9-14.
[12] ZHANG Hong-xing, SUI Xiao-xiang, WANG Hai-jun, LIU Zhong-hua, CHEN Huai-dong, ZHANG Hai-feng. Numerical Simulation Study of Leakage Flow Field on the Wall Surface of Condenser Pipe [J]. VACUUM, 2023, 60(6): 15-21.
[13] XU Hai-long, FU Bao-quan. Research on Vacuum Preparation and Corrosion Resistance of Titanium Alloys with High Mo Content [J]. VACUUM, 2023, 60(6): 53-60.
[14] ZHANG Wan-fu, YE Chao, LI Qiang, LI Jun, WANG De-hong, LUO Jun-yi. Manufacturing Technology for Low O/N Content Ni-based Superalloy K417G [J]. VACUUM, 2023, 60(6): 66-70.
[15] WU Xiu-hai, MA Yun-fang, CHEN Hai-yao. Design and Test of Screw Vacuum Pump with Low Specific Power And Wide Working Capacity [J]. VACUUM, 2023, 60(6): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .