欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (5): 39-43.doi: 10.13385/j.cnki.vacuum.2025.05.06

• Thin Film • Previous Articles     Next Articles

Microstructure and Mechanical Properties of Sc2O3-Y2O3-ZrO2 Ceramic Materials for Thermal Barrier Coating

GUO Maomao1, XIE Min1, WANG Zhigang1, MU Rende1,2, SONG Xiwen1,3, ZHANG Yonghe1   

  1. 1. School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China;
    2. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    3. Ordos Vocational College, Ordos 017000, China
  • Received:2025-02-12 Published:2025-09-29

Abstract: Multi rare-earth oxide doping is used to improve the comprehensive performance of traditional YSZ thermal barrier coatings, Sc2O3-Y2O3-ZrO2 (ScYSZ system) ceramic materials with different Sc2O3 and Y2O3 ratios (total molar fraction of 8mol.%) were synthesized by the solid-state method. The microstructure and room temperature mechanical properties of ceramic samples were tested and analyzed, compared with the traditional 8YSZ ceramic material. The results show that the ScYSZ ceramics prepared by the solid-state method are composed of t' (the main phase) and c phases, and the proportion of t' phase increases with the Sc2O3 content. The fracture surface of ScYSZ ceramics is smooth, and the doping of Sc2O3 does not change the brittle fracture characteristics of YSZ materials. When the Sc2O3 molar fraction is ≥ 7.3%, the hardness of the ScYSZ system is about 4%-6% higher than that of 8YSZ, and it exhibits good comprehensive mechanical properties at room temperature. ScYSZ ceramics can be used as a potential ceramic material for thermal barrier coating.

Key words: solid-state method, ScYSZ ceramic material, microstructure, mechanical property

CLC Number:  TQ174.75;TB3

[1] KADIR M D, ABDULLAH C K, YASIN O, et al.Performance of single YSZ, Gd2Zr2O7, and double-layered YSZ/Gd2Zr2O7 thermal barrier coatings in isothermal oxidation test conditions[J]. Vacuum, 2020, 177: 109401.
[2] 李国浩,巴德纯,王栋,等. EB-PVD制备YSZ涂层的热震性研究[J]. 真空, 2020, 57(3):1-4.
[3] 王晶, 陆杰, 赵晓峰, 等. 氧化钇含量对YSZ热障涂层抗CMAS腐蚀性能的影响[J]. 航空材料学报, 2023, 43(4):25-36.
[4] 郭洪波, 彭立全, 宫声凯, 等. 电子束物理气相沉积热障涂层技术研究进展[J]. 热喷涂技术, 2009, 1(2):7-14.
[5] ZHAO X, XIAO P.Thermal barrier coatings on nickel superalloy substrates[J]. Materials Science Forum, 2009, 606:1-26.
[6] SAMPATH S, SCHULZ U, JARLIGO M O, et al.Processing science of advanced thermal-barrier systems[J]. Materials Research Society Bulletin, 2012, 37(10): 903-910.
[7] 华佳捷, 张丽鹏, 刘紫微, 等. 热障涂层失效机理研究进展[J]. 无机材料学报,2012,27(7):680-686.
[8] CLARKE D R, PHILLPOT S R.Thermal barrier coating materials[J]. Materials Today, 2005, 8(6): 22-29.
[9] 赵鹏森, 曹新鹏, 郑海忠, 等. 稀土掺杂热障涂层的研究进展[J]. 航空材料学报, 2021, 41(4):83-95.
[10] JONES R L, MESS D. Improved tetragonal phase stability at1400 C with scandia, yttria-stabilized zirconia[J]. Surface & Coatings Technology, 1996, 86/87: 94-101.
[11] JONES R L, REIDY R F, MESS D.Scandia, yttria-stabilized zirconia for thermal barrier coatings[J]. Surface & Coatings Technology, 1996, 82:70-76.
[12] LEONI M, JONES R L, SCARDI P. Phase stability of scandia-yttria-stabilized zirconia TBCs[J]. Surface & Coatings Technology, 1998, 108-109:107-113.
[13] HUANG X, WANG D, LAMONTAGNE M, et al.Experimental study of the thermal conductivity of metal oxides co-doped yttria stabilized zirconia[J]. Materials Science and Engineering: B, 2008, 149(1): 63-72.
[14] 钟金豹. 纳米氧化锆增韧氧化铝基陶瓷刀具及切削性能研究[D].济南:山东大学,2007.
[15] ANSTIS G R, CHANTIKUL P, LAWN B R, et al.A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 64(9): 533-538.
[16] CHAO C, TIANQUAN L, YAN G, et al.Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4 + V2O5 molten salts at 1000 ℃[J]. Corrosion Science, 2019, 158: 94-108.
[17] REN X, WANG X, PAN W.Degradation analysis of YSZ thermal barrier coatings[J]. Rare Metal Materials and Engineering, 2011, 40: 586-588.
[18] 张震. 典型工程陶瓷材料的断裂形式及断裂韧性研究[D].秦皇岛:燕山大学,2017.
[19] 牟仁德. 热障涂层隔热性能研究[D].北京:北京航空材料研究院,2007.
[20] ZHU D, MILLER R A. Sintering and creep behavior of plasma-sprayed zirconia-and hafnia-based thermal barrier coatings[J]. Surface & Coatings Technology, 1998, 108/109:114-120.
[21] BASU B.Toughening of yttria-stabilised tetragonal zirconia ceramics[J]. International Materials Reviews, 2005, 50(4): 239-256.
[22] DANIELS J E, JONES J L, FINLAYSON T R.Characterization of domain structures from diffraction profiles in tetragonal ferroelastic ceramics[J]. Journal of Physics D: Applied Physics, 2006, 39: 5294.
[23] 赵蒙. 掺杂对氧化锆基热障涂层材料热物理性能的影响[D]. 北京:清华大学,2016.
[24] WAN C, QU Z, DU A, et al.Order-disorder transition and unconventional thermal conductivities of the (Sm1-xYbx)2Zr2O7 series[J]. Journal of the American Ceramic Society, 2011, 94: 592-596.
[1] ZHANG Xiangjun, LI Tianrui, WU Wenping, YANG Yong, CHEN Zhiqiang, XU Yong, LU Yong. Effect of Micro-Deoxidizing Elements on the Inclusions in Q355B Steel [J]. VACUUM, 2025, 62(2): 77-85.
[2] CHEN Ming, LI Xiangcai, ZHANG Xiaomin, HUANG Shuo, WANG Chong, HU Jun. Effect of P on the as Cast Microstructure and Mechanical Properties of Nickel Based Superalloy [J]. VACUUM, 2025, 62(2): 91-99.
[3] WANG Man, ZHAN Chunming, SHI Guomei, WANG Zhe. Effect of Vacuum Aging Process on Hardness and Microstructure of ZG0Cr17Ni4Cu3Nb and 0Cr17Ni4Cu4Nb [J]. VACUUM, 2025, 62(2): 100-104.
[4] JI Jian-chao, YAN Yue, HA En-hua. Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms [J]. VACUUM, 2024, 61(3): 57-62.
[5] LI Can-min, DONG Zhong-lin, XIA Zheng-wei, ZHANG Xin-feng, WEI Rong-hua. Microstructure and Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2024, 61(2): 10-15.
[6] ZHAO Zhen-yun, CHEN Ding-jun, GUO Yuan-meng, YANG Hao, DONG Shuai, SUN Tie-sheng, HUANG Mei-dong. Hydrophobic Properties of Chromium Nitride Thin Films at Different Temperatures [J]. VACUUM, 2024, 61(1): 27-33.
[7] YU Kang-yuan, HE Yu-dan, YANG Bo, LUO Jiang-shan. Effect of Sputtering Voltage on Microstructure and Properties of Cu Foils Deposited by High Power Impulse Magnetron Sputtering [J]. VACUUM, 2023, 60(3): 1-4.
[8] LIU Yang, ZHANG Ya-nan, GAO Sheng-yuan, ZHAO Zhen-yun, ZHENG Ming-hao, HUANG Mei-dong. Research on Mechanical Properties of Zr/ZrN Multilayers by Multi-arc Ion Plating [J]. VACUUM, 2022, 59(5): 28-31.
[9] XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Vacuum Electron Beam Welding of Semi-Y-state Oxygen Free Copper Plate in Boat Shape RF Cavity [J]. VACUUM, 2022, 59(5): 69-73.
[10] FU Xue-cheng, WU Li-ying, LUAN Zhen-xing, MAO Hai-ping, WANG Ying. Modification of Tungsten Crucible for Electron Beam Evaporation of Silver Film [J]. VACUUM, 2022, 59(3): 41-45.
[11] CHANG Zhen-dong, DENG Zhong-hua, SUN Rong-zhen, MU Ren-de, HU Jiang-wei. Effect of Matrix Surface Microstructure on the Adhesion of PVD Coating [J]. VACUUM, 2022, 59(3): 52-56.
[12] LIU Xiao-gong, JIANG Nan, HAO Qi-zan, LUO Liang, SHI Zhen-xue, LUO Yu-shi. Experimental Research on Casting Dimension Effect of Single Crystal Superalloy [J]. VACUUM, 2022, 59(3): 80-85.
[13] LV Qian-qian, SUN Zhen-chuan, ZHOU Jian-jun, YANG Zhen-xing, CHEN Rui-xiang, YOU Hui-jie. Laboratory Experiment on the System Performance of Low Vacuum Piping [J]. VACUUM, 2021, 58(3): 7-12.
[14] BAO Si-ping, ZHAO Yi-hong, ZHOU Xiao-jin, WANG Zi-li, HE Yu-long, GENG Hao-ran, WANG Kai, SHI Min-jie, CHEN Rong-fa. Effect of Vacuum Heat Treatment on the Microstructure and Wear Resistance of 42CrMo Alloy Rotor [J]. VACUUM, 2020, 57(6): 31-34.
[15] ZHAO Xing-wang, LIU Yan-mei, FU He-guo, SHI Ji-peng, GUAN Feng. Research on Microstructure and Mechanical Properties of Laser Butt Welding of Thin TC4 Titanium Alloy [J]. VACUUM, 2020, 57(4): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .