欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (1): 7-12.doi: 10.13385/j.cnki.vacuum.2022.01.02

Previous Articles     Next Articles

Effect of Tube Cross-Section Shape on Aerodynamic Characteristics of Subsonic Evacuated Tube Maglev System

SONG Jia-yuan, LI Tian, ZHANG Ji-ye, ZHANG Wei-hua   

  1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2021-06-15 Online:2022-01-25 Published:2022-01-27

Abstract: The internal flow field of a subsonic evacuated tube train is complex,and it is important to study the effect of the tube cross-section shape on the aerodynamic properties. Based on computational fluid dynamics(CFD), considering the fluid viscosity and train suspension gap, a three-dimensional aerodynamic model of subsonic evacuated tube train is established. The aerodynamic drag, flow field characteristics and aerodynamic heating effect in 4 different cross-sectional tube are numerical simulated and compared. The results show that when the blockage ratio is constant, the aerodynamic drag of the train in an arched tube is the smallest, and then the circular tube, the largest in the rectangular tube. The pressure gradient in the vertical direction of the circular tube is the smallest, and the pressure on the upper surface of the tube is also the smallest. In the subsonic evacuated tube maglev system, the maximum temperature is shown on both sides of the train bump, and the minimum temperature is on the tube surface. Tube cross-section shape has few effects on the temperature distribution. When the area of the tube cross-section is chosen, the arched tube is prior recommended,and next choice is the circular tube.

Key words: evacuated tube train, tube cross-section shape, aerodynamic forces, pressure, aerodynamic heating

CLC Number: 

  • U171
[1] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133-137.
[2] 张耀平. 真空管道运输——真空产业发展的新机遇[J]. 真空, 2006, 43(2): 60-63.
[3] 谢元华, 韩进, 张志军, 等. 真空输送的现状与发展趋势探讨(六)[J]. 真空, 2018, 55(6): 28-32.
[4] 谢元华, 韩进, 张志军, 等. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34-37.
[5] MUSK E.Hyperloop Alpha[R]. SpaceX, 2013, 13-14.
[6] KIMT K, KIMK H, KWON H B.Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(12): 1187-1196.
[7] CHOI J K, KIM K H.Effects of nose shape and tunnel cross-sectional area on aerodynamic drag of train traveling in tunnels[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2014, 41: 62-73.
[8] 刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137-143.
[9] LI T, ZHANG X H, JIANG Y, et al.Aerodynamic eesign of a subsonic evacuated tube train system[J]. Fluid Dynamics & Materials Processing, 2020, 16(1).
[10] 张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182-190.
[11] ZHANG X H, JIANG Y, LI T.Effect of streamlined nose length on the aerodynamic performance of a 800 km/h evacuated tube train[J]. Fluid Dynamics and Materials Processing, 2019, 15(4): 67-76.
[12] NIU J Q, SUI Y, YU Q J, et al.Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100-111.
[13] 周鹏, 李田, 张继业, 等.真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86-97.
[14] 周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190-199.
[15] 贾文广, 董晨光, 周艳, 等. 基于阻塞比的真空管道交通系统热压耦合研究[J]. 工程热物理学报, 2013, 34(9): 1745-1748.
[16] 张俊博, 李红梅, 王俊彪, 等. 低真空管道磁悬浮列车热效应仿真分析研究[J]. 中国铁路, 2020(11): 100-106.
[17] 王凯. 基于热压循环通道的真空管道交通系统气动及热力学特性研究[D]. 青岛: 青岛科技大学, 2018.
[18] 周艳, 刘海龙, 刘英杰, 等.真空管道交通系统超音速状态下熵层的研究[J]. 真空科学与技术学报, 2014, 34(8): 775-780.
[19] 林建忠. 流体力学[M]. 北京: 清华大学出版社, 2013.
[20] 田运朋. 基于ANSYS分析不同截面的地铁隧道开挖变形和应力分布[J]. 建筑技术开发, 2021, 48(6): 79-81.
[1] ZHU Bei-bei, NI Chang, QIN Lin, CHU Jian-ning, CHEN Xiao, XU Jian-feng. Nano Film Deposition Technology Based on Magnetron Sputtering [J]. VACUUM, 2021, 58(6): 21-26.
[2] QI Da-wei, GAO Jun-wang, WU Bin, WANG Hui, LV De-run. Optimal Design of Large Caliber Vacuun Gate Valve [J]. VACUUM, 2021, 58(5): 46-49.
[3] WEI Meng-yao, WANG Hui, HAN Wen-fang, WANG Hong-li, SU Yi-fan, TANG Chun-mei, DAI Ming-jiang, SHI Qian. Study on Electrochromic Properties of Tungsten Oxide Films Deposited by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2021, 58(5): 50-56.
[4] ZHANG Jian, NIU Xia-bin, LI Jian-hao, QI Zhen-hua. Effect of RF Power and Sputtering Pressure on Al Film Sputtered on Polythylene Terephthalate Substrates [J]. VACUUM, 2021, 58(4): 21-24.
[5] SHI Yang, XIE Yong-qiang, WU Chun-hui, BAO Xiang, WANG Cheng-jun, WANG Yong-qing, ZHAO Xing-liang. Study on Effect of Material Outgassing on the Pressure Rise Rate in Vacuum Brazing System [J]. VACUUM, 2021, 58(2): 42-47.
[6] WANG Jie, KANG Song, DONG Chang-kun. Study on Working Performance for Low Pressure Carbon Nanotube Micro Sensor [J]. VACUUM, 2021, 58(1): 1-5.
[7] LIU Shun-ming, OUYANG Hua-fu, HU Zhi-liang, SONG Hong, HUANG Tao, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, LIU Sheng-jin, XIAO Yong-chuan, CAO Xiu-xia, LU Yong-jia, XUE Kang-jia, WU Xuan, KANG Ming-tao, BNCT Team. Vacuum System for Boron Neutron Capture Therapy(BNCT) [J]. VACUUM, 2020, 57(6): 64-68.
[8] WEI Xian-lu, GONG Chen-yang, XIAO Jian-rong. Structure and Optical Properties of MoS2 Thin Films Prepared by RF Reactive Magnetron Sputtering [J]. VACUUM, 2020, 57(5): 11-13.
[9] LI Xue-feng, MA Qiang, LI Xiao-ming, WANG Zhi-rong, WU Ai-rong, LIU Cheng. Application of Differential Pressure Carrier Gas Dewax in Vacuum Dewaxing Sintering Furnace [J]. VACUUM, 2020, 57(4): 32-35.
[10] ZHANG Hai-feng, SUN Li-chen, GUO Chong-wu, QI Fei-fei, LI Wen-bin. Research on the Total Leakage Test Technology with Static Pressure Rise Method for Sealed Biological Payload [J]. VACUUM, 2020, 57(4): 46-49.
[11] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[12] CHEN Lian, DONG Meng, LIU Guo-ting, ZHAO Lan, ZHANG Rui-fang, LI Ya-li, SUN Dong-hua, Zhang Rui-nian, CHENG Yong-jun. Analysis of Cavity Pressure Change for a Vacuum Electronic Device During in-Orbit Power-on [J]. VACUUM, 2020, 57(3): 61-66.
[13] LIU Ling-yun, LIN Song-sheng, WANG Di, LI Feng, DAI Ming-jiang, SHI Qian, WEI Chun-bei. Study on Preparation and Properties of CrAlN Anti-erosion Coating [J]. VACUUM, 2020, 57(2): 40-46.
[14] HUANG Nian-zhi, WU Yue, WU Fei, LI Qiong, ZHANG Li-na. Study on Calibration Method of Pressure Pipeline during Pressure Simulation Test [J]. VACUUM, 2020, 57(1): 51-55.
[15] ZHAO Zhou, WANG Xin. Analysis and Study on Instability of Corrugated Compensator for High Pressure Low Temperature Liquid Oxygen Pipeline [J]. VACUUM, 2019, 56(5): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .