VACUUM ›› 2023, Vol. 60 ›› Issue (4): 36-41.doi: 10.13385/j.cnki.vacuum.2023.04.07
• Measurement and Control • Previous Articles Next Articles
LI Ping-chuan1,2, XU Li1,3, ZHAO Jie1,3, ZHANG Fan1,2, XIONG Si-wei1, JIAN Yi1,3, ZHANG Zheng-hao1,2, TANG De-li1,2
CLC Number: V19;TB79
[1] 胡芬, 高小明. 面向测绘应用的遥感小卫星发展趋势分析[J]. 测绘科学, 2019, 44(1): 132-138. [2] 张天平, 周昊澄, 孙小菁, 等. 小卫星领域应用电推进技术的评述[J]. 真空与低温, 2014(4): 187-192. [3] LEITER H J, KILLINGER R, BOSS M, et al.RIT-μX-the new modular high precision micro ion propulsion system[C]//30th International Electric Propulsion Conference. Florence: IEPC, 2007. [4] HSIEH S C.Life assessment of a miniature microwave- frequency ion thruster[D]. Pennsylvania: The Pennsylvania State University, 2018. [5] ASIF M.Prototyping and optimization of a miniature microwave-frequency ion thruster[D]. Pennsylvania: The Pennsylvania State University, 2018. [6] WARNER N Z.Theoretical and experimental investigation of Hall thruster miniaturization[D]. Cambridge: Massachusetts Institute of Technology, 2007. [7] 康琦, 高辉, 贺建武. 狭缝式液态金属镓场发射推力器[C]//2015年小卫星技术交流会论文集. 北京: 中国宇航学会, 2015. [8] DONIUS B R, ROVEY J L.Ionic liquid dual-mode spacecraft propulsion assessment[J]. Journal of Spacecraft & Rockets, 2011, 48(1): 110-123. [9] POTTINGER S J, KREJCI D, SCHARLEMANN C A.Pulsed plasma thruster performance for miniaturized electrode configurations and low energy operation[J]. Acta Astronautica, 2011, 68(11/12): 1996-2004. [10] 张帆, 李平川, 张正浩, 等. 基于霍尔离子源的小型化电推力器仿真设计[J]. 真空科学与技术学报, 2021, 41(10): 993-1000. [11] 陈茂林, 刘旭辉, 周浩浩, 等. 适用于微纳卫星的微型电推进技术研究进展[J]. 固体火箭技术, 2021, 44(2): 188-206. [12] JACOBSON D T, JANKOVSKY R S, RAWLIN V K, et al.High voltage TAL performance[C]//37th Joint Propulsion Conference and Exhibit,Joint Propulsion Conference. Salt Lake City, UT, USA: AIAA, 2001. [13] SEMENKIN A V, ZAKHARENKOV L E, SOLODUKHIN A E.Feasibility of high power multi-mode EPS development based on the thruster with anode layer[C]//32nd International Electric Propulsion Conference. Wiesbaden, Germany: IEPC, 2011. [14] CAPPELLI M.Very high isp thruster with anode layer(VHITAL)-an overview[C]//Space 2004 Conference and Exhibit, AIAA SPACE Forum. San Diego, California: AIAA, 2004. [15] TVERDOKHLEBOV S, SEMENKIN A, POLK J.Bismuth propellant option for very high power TAL thruster[C]//AIAA Aerospace Sciences Meeting & Exhibit. Nevada: AIAA, 2013. [16] 李平川, 唐德礼, 赵杰, 等. 空心内磁极圆柱形阳极层霍尔推进器溅射仿真[J]. 真空科学与技术学报, 2018, 38(10): 875-882. [17] 赵杰, 唐德礼, 李平川, 等. 电磁场对阳极层霍尔推力器电离效率的影响[J]. 真空科学与技术学报, 2019, 39(7): 583-587. [18] 张帆, 李平川, 张正浩, 等. 基于霍尔离子源的小型化电推力器仿真设计[J]. 真空科学与技术学报, 2021, 41(10): 993-1000. [19] MEYER R X.A space-charge-sheath electric thrustor[C]//3rd Annual Meeting. Boston, MA, USA: AIAA, 1966. [20] SEMENKIN A V, TVERDOKHLEBOV S O, GARKUSHA V I, et al.Operating envelopes of thrusters with anode layer[C]//27th International Electric Propulsion Conference. Pasadena, USA: IEPC, 2001. [21] 赵杰, 唐德礼, 程昌明, 等.低功率圆柱形阳极层离子源的性能研究[J].核聚变与等离子体物理, 2009, 29(1): 92-96. |
[1] | LI Xing-hui, DU Ting, HAN Pan-yang, CHEN Hai-jun, CAI Jun, FENG Jin-jun. Technology Review of Vacuum Micropumps [J]. VACUUM, 2023, 60(4): 54-59. |
[2] | WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68. |
[3] | FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85. |
[4] | LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15. |
[5] | ZHAO Xi-hao, ZHAO Li-zhuang, WANG Jun, LI Xue-qin, CUI Feng, WANG Zeng-li, GENG Mao-fei. Design and Analysis of New Sinusoidal Helical Screw Rotor for Twin-Screw Vacuum Pump [J]. VACUUM, 2022, 59(3): 1-6. |
[6] | WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37. |
[7] | LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5. |
[8] | ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44. |
[9] | KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84. |
[10] | ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59. |
[11] | ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79. |
[12] | DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58. |
[13] | CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58. |
[14] | LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38. |
[15] | WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 23
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|