欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (4): 36-41.doi: 10.13385/j.cnki.vacuum.2023.04.07

• Measurement and Control • Previous Articles     Next Articles

Numerical Simulation and Experimental Research on Miniaturized Anode Layer Thruster

LI Ping-chuan1,2, XU Li1,3, ZHAO Jie1,3, ZHANG Fan1,2, XIONG Si-wei1, JIAN Yi1,3, ZHANG Zheng-hao1,2, TANG De-li1,2   

  1. 1. Southwestern Institute of Physics, Chengdu 610200, China;
    2. China Nuclear Tongchuang(Chengdu)Technology Co., Ltd., Chengdu 610207, China;
    3. The Engineering & Technological College of Chengdu University of Technology, Leshan 614000, China
  • Received:2023-05-22 Online:2023-07-25 Published:2023-07-26

Abstract: In this paper, particle grid combined with Monte Carlo collision method was used to simulate the miniaturized anode layer Hall thruster. Meanwhile, the discharge experiment of the miniaturized anode layer Hall thruster was carried out to evaluate its performance. The results show that the discharge of the miniaturized anode layer thruster is stable, and the ion beam presents a bunched mode. The discharge voltage range is 300~1100V, the specific impulse range is 234~2047s, and the thrust range is 0.5~5.4mN. This study can provide certain data support for further optimization design of high efficiency, light mass and high performance micro anode layer Hall thruster.

Key words: anode layer thruster, microminiaturization, numerical simulation, work performance

CLC Number:  V19;TB79

[1] 胡芬, 高小明. 面向测绘应用的遥感小卫星发展趋势分析[J]. 测绘科学, 2019, 44(1): 132-138.
[2] 张天平, 周昊澄, 孙小菁, 等. 小卫星领域应用电推进技术的评述[J]. 真空与低温, 2014(4): 187-192.
[3] LEITER H J, KILLINGER R, BOSS M, et al.RIT-μX-the new modular high precision micro ion propulsion system[C]//30th International Electric Propulsion Conference. Florence: IEPC, 2007.
[4] HSIEH S C.Life assessment of a miniature microwave- frequency ion thruster[D]. Pennsylvania: The Pennsylvania State University, 2018.
[5] ASIF M.Prototyping and optimization of a miniature microwave-frequency ion thruster[D]. Pennsylvania: The Pennsylvania State University, 2018.
[6] WARNER N Z.Theoretical and experimental investigation of Hall thruster miniaturization[D]. Cambridge: Massachusetts Institute of Technology, 2007.
[7] 康琦, 高辉, 贺建武. 狭缝式液态金属镓场发射推力器[C]//2015年小卫星技术交流会论文集. 北京: 中国宇航学会, 2015.
[8] DONIUS B R, ROVEY J L.Ionic liquid dual-mode spacecraft propulsion assessment[J]. Journal of Spacecraft & Rockets, 2011, 48(1): 110-123.
[9] POTTINGER S J, KREJCI D, SCHARLEMANN C A.Pulsed plasma thruster performance for miniaturized electrode configurations and low energy operation[J]. Acta Astronautica, 2011, 68(11/12): 1996-2004.
[10] 张帆, 李平川, 张正浩, 等. 基于霍尔离子源的小型化电推力器仿真设计[J]. 真空科学与技术学报, 2021, 41(10): 993-1000.
[11] 陈茂林, 刘旭辉, 周浩浩, 等. 适用于微纳卫星的微型电推进技术研究进展[J]. 固体火箭技术, 2021, 44(2): 188-206.
[12] JACOBSON D T, JANKOVSKY R S, RAWLIN V K, et al.High voltage TAL performance[C]//37th Joint Propulsion Conference and Exhibit,Joint Propulsion Conference. Salt Lake City, UT, USA: AIAA, 2001.
[13] SEMENKIN A V, ZAKHARENKOV L E, SOLODUKHIN A E.Feasibility of high power multi-mode EPS development based on the thruster with anode layer[C]//32nd International Electric Propulsion Conference. Wiesbaden, Germany: IEPC, 2011.
[14] CAPPELLI M.Very high isp thruster with anode layer(VHITAL)-an overview[C]//Space 2004 Conference and Exhibit, AIAA SPACE Forum. San Diego, California: AIAA, 2004.
[15] TVERDOKHLEBOV S, SEMENKIN A, POLK J.Bismuth propellant option for very high power TAL thruster[C]//AIAA Aerospace Sciences Meeting & Exhibit. Nevada: AIAA, 2013.
[16] 李平川, 唐德礼, 赵杰, 等. 空心内磁极圆柱形阳极层霍尔推进器溅射仿真[J]. 真空科学与技术学报, 2018, 38(10): 875-882.
[17] 赵杰, 唐德礼, 李平川, 等. 电磁场对阳极层霍尔推力器电离效率的影响[J]. 真空科学与技术学报, 2019, 39(7): 583-587.
[18] 张帆, 李平川, 张正浩, 等. 基于霍尔离子源的小型化电推力器仿真设计[J]. 真空科学与技术学报, 2021, 41(10): 993-1000.
[19] MEYER R X.A space-charge-sheath electric thrustor[C]//3rd Annual Meeting. Boston, MA, USA: AIAA, 1966.
[20] SEMENKIN A V, TVERDOKHLEBOV S O, GARKUSHA V I, et al.Operating envelopes of thrusters with anode layer[C]//27th International Electric Propulsion Conference. Pasadena, USA: IEPC, 2001.
[21] 赵杰, 唐德礼, 程昌明, 等.低功率圆柱形阳极层离子源的性能研究[J].核聚变与等离子体物理, 2009, 29(1): 92-96.
[1] LI Xing-hui, DU Ting, HAN Pan-yang, CHEN Hai-jun, CAI Jun, FENG Jin-jun. Technology Review of Vacuum Micropumps [J]. VACUUM, 2023, 60(4): 54-59.
[2] WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68.
[3] FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85.
[4] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[5] ZHAO Xi-hao, ZHAO Li-zhuang, WANG Jun, LI Xue-qin, CUI Feng, WANG Zeng-li, GENG Mao-fei. Design and Analysis of New Sinusoidal Helical Screw Rotor for Twin-Screw Vacuum Pump [J]. VACUUM, 2022, 59(3): 1-6.
[6] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
[7] LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5.
[8] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[9] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[10] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[11] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[12] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[13] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[14] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[15] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text
23
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 23

  From local
  Times 23
  Rate 100%

Abstract
102
Just accepted Online first Issue
0 0 102
  From Others
  Times 102
  Rate 100%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .