欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (5): 70-74.doi: 10.13385/j.cnki.vacuum.2023.05.11

• Vacuum Acquisition System • Previous Articles     Next Articles

Simulation for Multi-scale Flows of Complex Model Based on Discrete Ordinates Method

WANG Jun-wei1, WANG Kui-bo2, HU Kai-nan3, BAI Bing1   

  1. 1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China;
    2. Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100094, China;
    3. School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330105, China
  • Received:2022-11-09 Online:2023-09-25 Published:2023-09-26

Abstract: Multi-scale flows are not only used in hypersonic vehicles,orbit change/attitude adjustment of spacecraft and other aerospace fields, but also the scientific and engineering practices such as the mass transfer/heat transfer in micro/nano manufacturing and device. Accurate and rapid simulation of multi-scale flows is of great significance to this kind of scientific research and engineering practice. The discrete ordinates method based on unified gas kinetic scheme is introduced to study the field simulation of multi-scale flows, and the internal flow field simulation of a dynamic gas lock model is completed. The temperature field, velocity field and density field of the model are obtained, and the results are in line with theoretical expectations.

Key words: multi-scale flow, vacuum, unified gas kinetic scheme, discrete ordinates method, dynamic gas lock

CLC Number:  TB71+1

[1] 李志辉, 梁杰, 李中华, 等. 跨流域空气动力学模拟方法与返回舱再入气动研究[J]. 空气动力学学报, 2018, 36(5): 826-847.
[2] 李志辉, 梁杰, 唐志共, 等. “航天飞行器跨流域空气动力学与飞行控制关键基础问题研究”项目2014年度研究进展[R]. 国防科技报告, 2014CB744100/01, 2014.
[3] 史纪鑫. 航天器姿控发动机真空羽流场计算及其扰动分析[J]. 航天器环境工程, 2011, 28(5): 431-435.
[4] LIU S, ZHONG C W, BAI J.Unified gas-kinetic scheme for microchannel and nanochannel flows[J]. Computers & Mathematics with Applications, 2015, 69(1): 41-57.
[5] 花雨, 毕海林, 孙伟, 等. 空间站舱外泄漏羽流场数值模拟[J]. 航天器环境工程, 2019, 36(4): 313-317.
[6] WANG R J, XU X P, XU K, et al.Onsager′s cross coupling effects in gas flows confined to micro-channels[J]. Physical Review Fluids, 2016, 1(4): 044102.
[7] BIRD G A.Molecular gas dynamics and the direct simulation of gas flows[M]. New York: Oxford University Press, 1994.
[8] 樊菁. 稀薄气体动力学: 进展与应用[J]. 力学进展, 2013, 43(2): 185-201.
[9] 周士杰, 夏健, 陈晓霞, 等. 基于切割单元直角坐标网格的DSMC 方法及优化技术[J]. 南京航空航天大学学报, 2016, 48(4): 486-494.
[10] FANG M, LI Z H, LI Z H, et al.DSMC approach for rarefied air ionization during spacecraft reentry[J]. Communications in Computational Physics, 2018, 23(4): 1167-1190.
[11] HASH D B, HASSAN H A.Assessment of schemes for coupling Monte-Carlo and Navier-Stokes solution methods[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(2): 242-249.
[12] SCHWARTZENTRUBER T E, SCALABRIN L C, BOYD I D.Hybrid particle-continuum simulations of hypersonic flow over a hollow-cylinder-flare geometry[J]. AIAA Journal, 2008, 46(8): 2086-2095.
[13] 李中华, 党雷宁, 李志辉. 高超声速化学非平衡流动Navier-Stokes/DSMC耦合算法[J]. 航空学报, 2018, 39(10): 100-111.
[14] 杨鲤铭, 李志辉, 舒昌. 离散速度方法及其在跨流域问题中的应用研究进展[J].南京航空航天大学学报, 2022, 54(4): 537-551.
[15] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4): 1-13.
[16] 李志辉, 张涵信. 稀薄流到连续流的气体运动论统一数值算法初步研究[J]. 空气动力学学报, 2000, 18(3): 255-263.
[17] 刘沙. 统一气体动理论格式研究[D]. 西安: 西北工业大学, 2015.
[18] CHEN J, LIU S, WANG Y, et al.Conserved discrete unified gas-kinetic scheme with unstructured discrete velocity space[J]. Physical Review E, 2019, 100(4): 043305.
[19] 陈进新, 王宇, 谢婉露. 极紫外光刻动态气体锁抑制率的仿真研究[J]. 激光与光电子学进展, 2017, 54(2): 023401.
[20] 陈进新, 王魁波, 王宇. 极紫外真空动态气体锁流场分析与研究[J]. 真空科学与技术学报, 2015, 35(8): 940-946.
[1] LU Guo-zhu. Relativity, Quantum Mechanics and Vacuum Science & Technology——Study on vacuum background may lead to breakthroughs in 21st century fundamental physics [J]. VACUUM, 2023, 60(5): 1-12.
[2] SUN Zhen-hua, ZHAO Zhe, WANG Ding, ZHANG Fan. Design of Vacuum Evaporation Coating Equipment for Continuous Strip Steel [J]. VACUUM, 2023, 60(5): 42-46.
[3] WANG Yuan-qi, HU Yang-gang, WANG Lei. Prediction of Vacuum Glass Insulation Performance Based on Random Forest [J]. VACUUM, 2023, 60(5): 55-59.
[4] QI Song-song, NI Jun, LI Zhuo-hui, SHI Cheng-tian, FENG Lei, CHEN Hong-bin, LI Can-lun. Research on Gate Design and Optimization of Super Large Vacuum Vessel [J]. VACUUM, 2023, 60(5): 81-85.
[5] SONG Jing-si, WANG Chun-gang, HUANG Han-chuan, ZUO Ye, TENG Long, CHEN Jiu-qiang, LI Xiu-zhang. The Mainstream Structure and Future Development of Vacuum Induction Precision Casting Furnace for Equiaxed Crystal Casting [J]. VACUUM, 2023, 60(5): 92-97.
[6] WAN Xu-jie, ZHANG Hua-xia, ZHANG Feng-xiang, GAO Hong-ru, MA Bao-hong, ZHAO Xin-ying, LIU Kun. Study on the Surface Erosion of Refractory Materials During the Superalloy Vacuum Melting Casting Process [J]. VACUUM, 2023, 60(5): 98-101.
[7] LI Xing-hui, DU Ting, HAN Pan-yang, CHEN Hai-jun, CAI Jun, FENG Jin-jun. Technology Review of Vacuum Micropumps [J]. VACUUM, 2023, 60(4): 54-59.
[8] LI Jin-ming, WANG Jin-wei, LIU Jun-nan, CHEN Ming. High-precision Measurement Device for Outgassing Rate of Vacuum Materials [J]. VACUUM, 2023, 60(4): 60-64.
[9] YI Jun, ZHOU Fan, DENG He, YUE Xiao-bin, WANG Bao-rui, HAN Zhi-jia, WANG Jin. Development of Circulating and Boosting Pump for Tritium Transportation [J]. VACUUM, 2023, 60(4): 69-74.
[10] ZHANG Hong-bo, QU Tian-liang, WANG Peng. High Vacuum Maintaining Technology for Hemispherical Resonator Gyro [J]. VACUUM, 2023, 60(4): 75-79.
[11] ZHANG Feng-xiang, MA Guo-hong, WAN Xu-jie, MA Xiu-ping, WU Ke-han, ZHANG Hua-xia. Cause Analysis on the Surface Porosity in Superalloy Ingots During Vacuum Casting [J]. VACUUM, 2023, 60(4): 80-84.
[12] SUN Bin, LIU Xing-long, XU Cheng-yuan, WANG Qing, LIN Zeng. Vacuum Coating Helps Low-carbon Manufacturing and Sustainable Development [J]. VACUUM, 2023, 60(3): 12-17.
[13] REN Chang-qing, XU Fa-jian, HUANG Zhi-ting, YUAN Zheng, ZHANG Ze-sheng. Research on Screw Dry Vacuum-Compression System with Scene as Design Input [J]. VACUUM, 2023, 60(3): 46-50.
[14] DU Shan-guo, LI Bo, LI Qiang, XU You-min. Design and Optimization of Dust Removal System for Mechanical Vacuum Pump [J]. VACUUM, 2023, 60(3): 51-54.
[15] LIU Shun-ming, WANG Peng-cheng, LIU Jia-ming, TAN Biao, SUN Xiao-yang, WANG Yi-gang, ZHU Bang-le, SONG Hong, LI Bo, WU Xiao-lei, LI A-hong. The Vacuum Leakage Solution of CSNS DTL [J]. VACUUM, 2023, 60(3): 55-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!