欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (2): 1-5.doi: 10.13385/j.cnki.vacuum.2021.02.01

• 薄膜 •    下一篇

一种垂直递变流速氢化物气相外延(HVPE)反应腔流场分析及大尺寸材料生长*

李成明1,2, 苏宁3, 李琳4, 姚威振1, 杨少延1,5   

  1. 1.中国科学院半导体研究所,中国科学院半导体材料科学重点实验室,北京 100083;
    2.北京大学东莞光电研究院,广东 东莞 523808;
    3.沈阳真空技术研究所有限公司,辽宁 沈阳 110042;
    4.长沙(星沙)经济技术开发区毛塘工业园区湖南信息学院,湖南 长沙 410151;
    5.中国科学院大学,材料与光电研究中心,北京 100049
  • 收稿日期:2020-01-19 出版日期:2021-03-25 发布日期:2021-04-09
  • 作者简介:李成明(1972-),男,辽宁省沈阳市人,副研究员。
  • 基金资助:
    *国家自然科学基金项目(Nos. 61774147),国家重点研发计划(No. 2017YFB0404201),广东省财政补贴项目(粤财工【2015】639号)

Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor

LI Cheng-ming1,2, SU Ning3, LI Lin4, YAO Wei-zhen1, YANG Shao-yan1,5   

  1. 1. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 10083, China;
    2. Dongguan Institute of Opto-Electronics Peking University, Dongguan 523808, China;
    3. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China;
    4. Hunan Institue of Information Technology, Changsha 410151, China;
    5. Center of Materials Science and Optoelectronics Engineering, University of Chinese Acasdemy of Sciences, Beijing 100049, China
  • Received:2020-01-19 Online:2021-03-25 Published:2021-04-09

摘要: 以氮化镓(GaN)为代表的第三代半导体材料,是我国重要战略发展方向之一,而氢化物气相外延(HVPE)作为一种重要材料生长技术,是有效制备单晶材料的工艺手段,本文提出了一种分层次递变流速下HVPE流场与温度场,在垂直腔结构条件下,模拟从腔体中间区域到边缘区域不同流速层次条件下,腔内材料生长区域反应前驱物分布,得出结论:在边缘喷射区域流速为中心区域流速三倍时,反应前驱物可以有效分布在衬底托盘表面。最后,在蓝宝石衬底GaN籽晶表面进行HVPE材料生长,获得平均厚度为20.1μm,均匀性起伏6.9%的GaN单晶,证明理论优化设计下生长出良好的单晶薄膜材料。

关键词: 氢化物气相外延, 反应腔体, 氮化镓, 数值模拟, 喷管

Abstract: Gallium nitride(GaN), as the representative of the wide gap semiconductor materials, is one of the important strategic development directions in our country. As an important material growth technology, hydride vapor phase epitax(HVPE) is an effective method for the fabrication of single crystal materials. In this paper, we propose a new flow field and temperature field of HVPE under the condition of stratified flow rate. The results indicate that the reaction precursors can be effectively distributed on the surface of the substrate susceptor when the flow velocity in the outer jet inlets region is three times that in the center region. Finally, HVPE material was grown on the surface of GaN seed crystal on sapphire substrate, and GaN single crystal with average thickness of 20.1 μm and uniformity fluctuation of 6.9% was obtained, which proved that good single crystal film material was grown under theoretical optimization design.

Key words: HVPE, reactor, gallium nitride(GaN), numerical simulation, nozzle

中图分类号: 

  • O484.1
[1] MEI F, WU K M, PAN Y, et al. Structural and optical properties of Cr-doped semi-insulating GaN epilayers[J]. Appl. Phys. Lett., 2008, 93(11):113507-113507-3.
[2] CHIU C H, YEN H H, CHAO C L, et al.Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template[J]. Appl. Phys. Lett., 2008, 93(8): 081108.
[3] GROWDEN T A, CORNUELLE E M, STORM D F, et al.930 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes grown on MOCVD GaN-on-sapphire template[J]. Appl. Phys. Lett., 2019, 114(20): 203503.
[4] CHENG Y, LIU P, WU J J, et al.High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE[J]. J. Cryst. Growth, 2016,445: 24-29.
[5] RAZEGHI M, MCCLINTOCK R.A review of III-nitride research at the Center for Quantum Devices[J]. J. Cryst. Growth, 2009, 311(10): 3067-3074.
[6] CHO Y S, SUN Q, LEE I H, et al.Reduction of stacking fault density in m-plane GaN grown on SiC[J]. Appl. Phys. Lett., 2008, 93(11): 111904.
[7] YE Z, NITTA S G, NAGAMATSU K, et al.Ammonia decomposition and reaction by high-resolution mass spectrometry for group III-itride epitaxial growth[J]. J. Cryst. Growth, 2019, 516(76): 63-66.
[8] DINH D V, PARBROOK P J.Control growth orientation of semipolar GaN layers grown on 3C-SiC/(001) Si[J]. J. Cryst. Growth, 2018, 501: 34-37.
[9] LI H J, KANG J J, LI P P, et al.Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer[J].Appl. Phys. Lett., 2013, 102(1): 011105.
[10] WU T T, LO S Y, HUANG H M, TSAO C W, et al.High quality factor nonpolar GaN photonic crystal nanocavitie[J]. Appl. Phys. Lett., 2013, 102(19): 191116.
[11] WU Y Z, LIU B, LI Z H, et al.Homo-epitaxial growth of high crystal quality GaN thin films by plasma assisted-molecular beam epitaxy[J]. J. Cryst. Growth, 2019, 506: 30-35.
[12] MORISHITA M, KAWAMURA F, IWAHASHI T, et al.Growth of bulk GaN single crystals using Li-Na mixed flux system[J]. Jpn. J. Appl. Phys., 2003, 42(6A): 565-567.
[13] SYTNIEWSKI L J, LAPKIN A A, STEPANOV S, et al.CFD optimisation of up-flow vertical HVPE reactor for GaN growth[J]. J. Cryst. Growth, 2008, 310(14): 3358-3365.
[14] FREITAS J A, CULBERTSON J C, GLASER E R, et al.Efficient iron doping of HVPE GaN[J]. J. Cryst. Growth, 2018, 500(5): 111-116.
[15] HITE J K, ANDERSON T J, LUNA L E, et al.Influence of HVPE substrates on homoepitaxy of GaN grown by MOCVD[J]. J. Cryst. Growth, 2018, 498(3): 352-356.
[16] BOCKOWSKI M, IWINSKA M, AMILUSIK M, et al.Doping in bulk HVPE-GaN grown on native seeds-highly conductive and semi-insulating crystals[J]. J. Cryst. Growth, 2018, 499(1): 1-7.
[17] FUJIKURA H, KONNO T.Fabrication of large flat gallium nitride templates with extremely low dislocation densities in the 106cm2 range by novel two-side hydride vapor-phase epitaxial growth[J]. J. Cryst. Growth, 2017, 475: 208-215.
[18] GU C Y, LEE C M, LIU X L.Design of a three-layer hot-wall horizontal flow MOCVD reactor[J]. Semicond., 2012, 33(9): 093005.
[19] ZUO R, ZHANG H, LIU X L.Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets[J]. J. Cryst. Growth, 2006, 293(2): 498-508.
[20] ZUO R, XU Q, ZHANG H.An inverse-flow showerhead MOVPE reactor design[J]. J. Cryst. Growth, 2007, 298(5): 425-427.
[1] 朱志鹏, 秦彬玮, 张英莉, 岳向吉, 巴德纯. 稀薄气体流动的粒子图像测速实验研究*[J]. 真空, 2021, 58(1): 38-44.
[2] 苏天一, 张志军, 韩晶雪. 应用二维轴对称模型的微波真空干燥数值模拟*[J]. 真空, 2020, 57(4): 60-65.
[3] 孔源, 张海鸥, 高建成, 陈曦, 王桂兰. 金属激光熔化沉积过程双时间步长法多尺度物理耦合场的数值模拟*[J]. 真空, 2020, 57(4): 77-84.
[4] 赵宇辉, 赵吉宾, 王志国, 王福雨. Inconel 625镍基高温合金激光增材制造内应力控制方式研究*[J]. 真空, 2020, 57(3): 73-79.
[5] 杨飞, 李振海, 李建昌. 固体火箭发动机喷管型面的研究进展*[J]. 真空, 2020, 57(1): 40-47.
[6] 邓文宇, 段永利, 齐丽君, 孙宝玉. 单侧涡旋干式真空泵内气体流动的CFD模拟[J]. 真空, 2019, 56(4): 53-58.
[7] 李 琳 , 李成明 , 杨功寿 , 胡西多 , 杨少延 , 苏 宁 . 三层热壁金属有机化学气相外延流场计算机模拟[J]. 真空, 2019, 56(1): 34-38.
[8] 王晓冬, 吴虹阅, 张光利, 李 赫, 孙 浩, 董敬亮, TU Jiyuan. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1 -5 .
[2] 李福送, 王文军, 林伟健, 潘亚娟. 智能化螺杆空压机性能检测系统的总体设计*[J]. 真空, 2021, 58(1): 19 -22 .
[3] 杨乃恒. 关于真空除气使用的真空泵情况分析与讨论[J]. 真空, 2021, 58(1): 29 -32 .
[4] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15 -18 .
[5] 张世伟, 孙坤, 韩峰. 螺杆真空泵设计的常见问题分析[J]. 真空, 2021, 58(1): 23 -28 .
[6] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2020, 57(6): 84 -86 .
[7] 柴昊, 贾军伟, 王斌, 李鹏, 崔爽, 冯旭, 李伟, 刘展, 李绍飞, 陈权. 紧凑型微波ECR等离子体源的设计及其特性研究[J]. 真空, 2021, 58(1): 6 -9 .
[8] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10 -14 .
[9] 蔡潇, 曹曾, 张炜, 李瑞鋆, 黄勇. HL-2M装置真空室预抽气系统的研制*[J]. 真空, 2021, 58(1): 33 -37 .
[10] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72 -77 .