欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (1): 48-53.doi: 10.13385/j.cnki.vacuum.2022.01.09

• 测量与控制 • 上一篇    下一篇

新型碳纳米管微焦点电子源研究*

祝维, 陆群旭, 钱维金, 黄卫军, 董长昆   

  1. 温州大学 温州市微纳光电器件重点实验室,浙江 温州 325035
  • 收稿日期:2021-05-05 出版日期:2022-01-25 发布日期:2022-01-27
  • 作者简介:祝维(1993-),男,四川省南充市人,硕士生。
  • 基金资助:
    *国家自然科学基金(61620106006、61871292); 温州大学研究生科创基金(3162019010)

Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes

ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun   

  1. Wenzhou Key Lab of Micro-Nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China
  • Received:2021-05-05 Online:2022-01-25 Published:2022-01-27

摘要: 介绍了一种基于碳纳米管场发射的新型微焦点电子源技术。利用激光烧蚀镍金属表面使内部未氧化的镍金属熔化喷出暴露于基底表面,再通过化学气相沉积制备出直径约为350μm的半球壳型碳纳米管薄膜阴极。场发射测试表明,电子源具有低开启电场(<1V/μm)、高发射电流(可达1A/cm2)和高压强发射稳定等特点。通过复合石墨烯和750℃真空高温退火,高压强发射稳定性得到进一步提高。该工作提供了一种制备强流微尺度场发射阴极的有效途径。

关键词: 场发射电子源, 化学气相沉积, 多壁碳纳米管, 石墨烯, 激光烧蚀

Abstract: A new type of micro-focus electron source based on carbon nanotube field emission is developed. Laser ablation of the nickel substrate would melt the metal and spray the unoxidized metal inside to expose to the surface to form a hemispherical shell with a diameter of about 350μm,on which the carbon nanotube film is grown by the direct chemical vapor deposition technique. The micro-dimension electron source shows good field emission characteristic performances including low turn-on electric field(<1V/μm), high emission current(up to 1A/cm2), and stable high pressure emission stability. After addition of graphene materials and 750℃ annealing, the high-pressure emission stability is further improved. This work may provide an effective approach to prepare high-current micro-scale field emission cathodes.

Key words: field emission electron source, chemical vapor deposition, multi-walled carbon nanotubes, graphene, laser ablation

中图分类号: 

  • TB383
[1] SHAO X, SRINIVASAN A, ANG W K, et al.A high-brightness large-diameter graphene coated point cathode field emission electron source[J]. Nature Communications, 2018, 9(1): 1288.
[2] GIUBILEO F, DI BARTOLOMEO A, IEMMO L, et al.Field emission from carbon nanostructures[J]. Applied Sciences, 2018, 8(4): 526.
[3] DE JONGE N.Carbon nanotube electron sources for electron microscopes[J]. Advances in Imaging and Electron Physics, 2009, 156: 203-233.
[4] TEO K.Carbon nanotube electron source technology[J]. JOM, 2007, 59(3): 29-32.
[5] DONG C, MYNENI G R.Carbon nanotube electron source based ionization vacuum gauge[J]. Applied Physics Letters, 2004, 84(26): 5443-5445.
[6] DE JONGE N, BONARD J M.Carbon nanotube electron sources and applications[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical,Physical and Engineering Sciences, 2004, 362(1823): 2239-2266.
[7] DE JONGE N.Brightness of carbon nanotube electron sources[J]. Journal of Applied Physics, 2004, 95(2): 673-681.
[8] HAINFELD J F.Understanding and using field emission sources[J]. Scanning Electron Microscopy, 1977, 1: 591-604.
[9] FORBES R G, EDGCOMBE C, VALDRE U.Some comments on models for field enhancement[J]. Ultramicroscopy, 2003, 95: 57-65.
[10] CRESPI V H, CHOPRA N G, COHEN M L, et al.Anisotropic electron-beam damage and the collapse of carbon nanotubes[J]. Physical Review B, 1996, 54(8): 5927-5931.
[11] PAULMIER T, BALAT-PICHELIN M, LE QUÉAU D, et al. Physico-chemical behavior of carbon materials under high temperature and ion irradiation[J]. Applied Surface Science, 2001, 180(3/4): 227-245.
[12] DRESSELHAUS G, DRESSELHAUS M S, SAITO R.Physical properties of carbon nanotubes[M]. Singapore: World Scientific, 1998.
[13] PURCELL S, VINCENT P, JOURNET C, et al.Hot nanotubes:Stable heating of individual multiwall carbon nanotubes to 2000K induced by the field-emission current[J]. Physical Review Letters, 2002, 88(10): 105502.
[14] THONG J, OON C H, ENG W K, et al.High-current field emission from a vertically aligned carbon nanotube field emitter array[J]. Applied physics letters, 2001, 79(17): 2811-2813.
[15] SEMET V, BINH V T, VINCENT P, et al.Field electron emission from individual carbon nanotubes of a vertically aligned array[J]. Applied Physics Letters, 2002, 81(2): 343-345.
[16] DI Y S, XIAO M, ZHANG X B, et al.Large and stable emission current from synthesized carbon nanotube/fiber network[J]. Journal of Applied Physics, 2014, 115(6): 064305.
[17] SUN B, WANG Y, DING G F.RETRACTED ARTICLE: Flexible field emitter for X-ray generation by implanting CNTs into nickel foil[J]. Nanoscale Research Letters, 2016, 11(1): 326.
[18] DENG J H, LIU R N, ZHANG Y, et al.Highly improved field emission from vertical graphene-carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723: 75-83.
[19] DENG J H, CHENG G A, ZHENG R T, et al.Catalyst-free, self-assembly, and controllable synthesis of graphene flake-carbon nanotube composites for high-performance field emission[J]. Carbon, 2014, 67: 525-533.
[20] DENG J H, ZHENG R T, ZHAO Y, et al.Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission[J]. ACS Nano, 2012, 6(5): 3727-3733.
[21] DENG J H, ZHENG R T, YANG Y M, et al.Excellent field emission characteristics from few-layer graphene-carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition[J]. Carbon, 2012, 50(12): 4732-4737.
[22] PARMEE R J, COLLINS C M, MILNE W I, et al.X-ray generation using carbon nanotubes[J]. Nano Convergence, 2015, 2(1): 1-27.
[23] LIU Z, ZHANG J, YANG G, et al.Development of a carbon nanotube based microfocus X-ray tube with single focusing electrode[J]. Review of Scientific Instruments, 2006, 77(5): 054302.
[24] KIM H N, JEONG H Y, LEE J H, et al.Development of a high resolution X-ray inspection system using a carbon nanotube based miniature X-ray tube[J]. Review of Scientific Instruments, 2020, 91(4): 043703.
[25] CHOI Y C, KANG J T, PARK S, et al.Preparation of a miniature carbon nanotube paste emitter for very high resolution X-ray imaging[J]. Carbon, 2016, 100: 302-308.
[26] ZHANG M, TANG K, ZHANG J, et al.Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 491-501.
[27] ZHANG M, CHEN G, ZHOU Y, et al.Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser[J]. Materials & Design, 2014, 53: 568-576.
[28] HERNADI K, NAGY J B, BERNAERTS D, et al.Fe-catalyzed carbon nanotube formation[J]. Carbon, 1996, 34(10): 1249-1257.
[29] FONSECA A, HERNADI K, NAGY J B, et al.Optimization of catalytic production and purification of buckytubes[J]. Journal of Molecular Catalysis A Chemical, 1996, 107(1-3): 159-168.
[30] YU H P, LUO H J, CAI J Q, et al.Molecular and atomic adsorptions of hydrogen, oxygen, and nitrogen on defective carbon nanotubes:A first-principles study[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26655-26665.
[31] ZHAO Y Y, CAI J Q, LUO H J, et al.Low pressure hydrogen sensing based on carbon nanotube field emission:Mechanism of atomic adsorption induced work function effects[J]. Carbon, 2017, 124: 669-674.
[32] DONG C K, LUO H J, CAI J Q, et al.Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale, 2016, 8(10): 5599-5604.
[33] THAPA A, JUNGJOHANN K L, WANG X W, et al.Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification[J]. Journal of Materials Science, 2020, 55(5): 2101-2117.
[34] LIM Y D, KONG Q Y, WANG S M, et al.Enhanced field emission properties of carbon nanotube films using densification technique[J]. Applied Surface Science, 2019, 477: 211-219.
[35] DE JONGE N, BONARD J M.Carbon nanotube electron sources and applications[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2004, 362(1823): 2239-2266.
[36] DONG H S, JUNG S Ⅱ, YUN K N, et al.Field emission properties from flexible field emitters using carbon nanotube film[J]. Applied physics letters, 2014, 105(3): 1179.
[37] JEONG H J, JEEONG H D, KIM H Y, et al.All-carbon nanotube-based flexible field-emission devices: From cathode to anode[J]. Advanced Functional Materials, 2011, 21(8): 1526-1532.
[38] CHANG H C, LI C C, JEN S F, et al.All-carbon field emission device by direct synthesis of graphene and carbon nanotube[J]. Diamond and Related Materials, 2013, 31: 42-46.
[39] KAUR G, PULAGARA N V, KUMAR R, et al.Metal foam-carbon nanotube-reduced graphene oxide hierarchical structures for efficient field emission[J]. Diamond and Related Materials, 2020, 106: 107847.
[40] NAM T H, GOTO K, SHIMAMURA Y, et al.Effects of high-temperature thermal annealing on properties of aligned multi-walled carbon nanotube sheets and their composites[J]. Composite Interfaces, 2020, 27(6): 569-586.
[1] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10-14.
[2] 王鑫, 许振华, 彭超, 戴建伟, 甄真, 何利民, 牟仁德. 单晶高温合金铂改性铝化物涂层的高温防护性能研究*[J]. 真空, 2020, 57(3): 11-16.
[3] 高超, 张吉峰, 唐榕. 应用于石墨烯制备的CVD反应炉研制[J]. 真空, 2020, 57(3): 30-33.
[4] 冉彪, 刘飞, 于翔. 利用非晶SiC在硬质合金上原位生长石墨烯[J]. 真空, 2019, 56(4): 24-30.
[5] 李 琳 , 李成明 , 杨功寿 , 胡西多 , 杨少延 , 苏 宁 . 三层热壁金属有机化学气相外延流场计算机模拟[J]. 真空, 2019, 56(1): 34-38.
[6] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .