欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (4): 54-59.doi: 10.13385/j.cnki.vacuum.2023.04.10

• 真空获得与设备 • 上一篇    下一篇

微型化真空泵技术*

李兴辉, 杜婷, 韩攀阳, 陈海军, 蔡军, 冯进军   

  1. 中国电子科技集团公司第十二研究所 微波电真空器件国家级重点实验室,北京 100015
  • 收稿日期:2022-09-05 出版日期:2023-07-25 发布日期:2023-07-26
  • 作者简介:李兴辉(1971-),男,河南省舞钢市人,博士,研究员。
  • 基金资助:
    *国家自然科学基金重点项目资助(61831001)

Technology Review of Vacuum Micropumps

LI Xing-hui, DU Ting, HAN Pan-yang, CHEN Hai-jun, CAI Jun, FENG Jin-jun   

  1. National Key Laboratory of Science and Technology on Vacuum Electronics, Beijing Vacuum Electronics Research Institute, Beijing 100015, China
  • Received:2022-09-05 Online:2023-07-25 Published:2023-07-26

摘要: 微型化真空泵对于微机电系统和真空微电子器件的真空封装极具意义。本文从工作原理和工艺实现方面,分析了常见传统真空泵实现微型化的可行性,介绍了膜片泵、射流/扩散泵、努森泵和离子泵的微型化进展,并总结了当前存在的技术障碍。结果表明,目前热点研究的微型化真空泵已经可以构建从大气状态至高真空的真空系统。虽然真空泵微型化后,其性能和工作稳定性相对传统宏观真空泵有较大降低,但具有低功耗、可集成优势,对便携式系统和高真空微系统十分必要。

关键词: 微机电系统, 真空微电子器件, 真空泵, 微封装, 微型化

Abstract: Vacuum micropumps are of great importance for the vacuum packaging of micro-electro-mechanical systems(MEMS)and vacuum microelectronics devices. Based on the operating principle and process realization, the microminiaturization feasibility of common traditional vacuum pumps is analyzed. The developments of vacuum micropumps including membrane pump, Knudsen pump, vapor-jet/diffusion pump and ion sorption pump are introduced, and the technical difficulties are summarized. The results show that although the vacuum micropumps have obvious decrease in exhausting performances and reliabilities compared with their macro predecessors, they are still necessary for the portable and high-vacuum required microsystems with the merits of low-power consumption and ease of integration.

Key words: micro-electro-mechanical system, vacuum microelectronics device, vacuum pump, micro packaging, microminiaturization

中图分类号:  TN305

[1] MENZ W, MOHR J, PAUL O.Microsystem technology[M]. Hoboken, NJ: Wiley-VCH, 2001.
[2] DZIUBAN J A, MRÓZ J, SZCZYGIELSKA M, et al. Portable gas chromatograph with integrated components[J]. Sensors and Actuators A: Physical, 2004, 115(2/3): 318-330.
[3] MALCOLM A, WRIGHT S, SYMS R R A, et al. Miniature mass spectrometer systems based on a microengineered quadrupole filter[J]. Analytical Chemistry, 2010, 82(5): 1751-1758.
[4] SOMEREN B, BRUGGEN M J, ZHANG Y, et al.Multibeam electron source using MEMS electron optical components[C]//Journal of Physics: Conference Series. International MEMS Conference. Singapore: IOP, 2006, 34: 1092-1097.
[5] WELSH III W C. Vacuum and hermetic packaging of MEMS using solder[D]. Michigan, USA: University of Michigan, 2008.
[6] 单睿, 齐通通, 黎秉哲, 等. 非蒸散型薄膜吸气剂的研究现状及应用进展[J]. 功能材料, 2018, 49(5): 5049-5055.
[7] 周超, 李得天, 周晖, 等. MEMS器件真空封装用非蒸散型吸气剂薄膜研究概述[J]. 材料导报, 2019, 33(3): 438-443.
[8] BESHARATIAN A.A scalable, modular, multistage, peristaltic, electrostatic gas micropump[D]. Michigan, USA: University of Michigan, 2013.
[9] 王晓东, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2006.
[10] DÖPPER J, CLEMENS M, EHRFELD W, et al. Micro gear pumps for dosing of viscous fluids[J]. Journal of Micromechanics and Microengineering, 1997, 7: 230-232.
[11] JOHNSON M C, MCNAMEE M R, ANDINK J L. Miniature turbomolecular pump: US06412173B1[P].2002- 07-02.
[12] DODSON B. DARPA program develops world′s smallest vacuum pumps with big potential[EB/OL].[2022-08-25]http://www.gizmag.com/darpa-mems-smallest-vacuum-pumps/27883/.
[13] GRZEBYK T.MEMS vacuum pumps[J]. Journal of Microelectromechanical Systems, 2017, 26(4): 705-717.
[14] WILCOX J Z, GEORGE T, FELDMAN J.Miniature ring-orbitron getterion vacuum pumps[J]. NASA Tech Brief, 1999, 23(9): 1-2.
[15] MCNAMARA S, GIANCHANDANI Y B.On-chip vacuum generated by a micromachined Knudsen pump[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 741-746.
[16] WOIAS P.Micropumps-past, progress and future prospects[J]. Sensors and Actuators B: Chemical, 2005, 105(1): 28-38.
[17] SHARMA V.MEMS micropump for a micro gas analyzer[D]. Cambridge, USA: Mass Inst Technol, 2009.
[18] NEWTON E B.Design of curved electrodes to enable large stroke-lowvoltage micro actuators[D]. Cambridge, USA: Mass Inst Technol, 2016.
[19] WIJNGAART W V D, ASK H, ENOKSSON P, et al. A high-stroke, high-pressure electrostatic actuator for valve applications[J]. Sensors and Actuators A: Physical, 2002, 100(2/3): 264-271.
[20] OH K W, AHN C H.A review of microvalves[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 13-39.
[21] HAN J, YEOM J, MENSING G, et al.Characteristics of electrostatic gas micro-pump with integrated polyimide passive valves[J]. Journal of Micromechanics and Microengineering, 2012, 22(9): 095007.
[22] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2006.
[23] 高海波. 基于扩散泵与射流泵原理的微小型真空泵的研究[D]. 上海: 华东理工大学, 2013.
[24] DOM M, MUELLER J.A micromachined vapor jet pump[J]. Sensors and Actuators A: Physical, 2005, 119(2): 462-467.
[25] DOM M, MUELLER J.Design,fabrication,and characterization of a micro vapor-jet vacuum pump[J]. Journal of Fluids Engineering, 2007, 129(10): 1339-1345.
[26] KNUDSEN M, PARTINGTON J R.The kinetic theory of gases:some modern aspects[M]. New York, USA: Wiley, 1950.
[27] YOUNG M, HAN Y L, MUNTZ E P, et al.Characterization and optimization of a radiantly driven multi-stage Knudsen compressor[C]//Proc IMECE ASME Int Mech Eng Cong Expo. Washington DC, USA: AIP, 2003.
[28] GUPTA N K, GIANCHANDANI Y B.A high-flow Knudsen pump using apolymer membrane: performance at and below atmospheric pressures[C]//2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems(MEMS). Hong Kong, China: IEEE, 2010: 1095-1098.
[29] GUPTA N K, GIANCHANDANI Y B.Thermal transpiration in zeolites: a mechanism for motionless gas pumps[J]. Applied Physics Letters, 2008, 93(19): 193511.
[30] AN S, GUPTA N K, GIANCHANDANI Y B.A Si-micromachined 162-stage two-part Knudsen pump for on-chip vacuum[J]. Journal of Microelectromechanical System, 2013, 23(2): 406-416.
[31] AN S, QIN Y, GIANCHANDANI Y B.A monolithic high-flow Knudsen pump using vertical Al2O3 channels in SOI[J]. Journal of Microelectromechanical Systems, 2015, 24(5): 1606-1615.
[32] GREEN S R, MALHOTRA R, GIANCHANDANI Y B.Sub-Torr chip-scale sputter-ion pump based on a penning cell array architecture[J]. Journal of Microelectromechanical Systems, 2013, 22(2): 309-317.
[33] KOOPS H W R. A miniaturized orbitron pump for MEMS applications[C]//2005 International Vacuum Nanoelectronics Conference. Oxford, UK: IEEE, 2005, 58(38): 38-42.
[34] GRZEBYK T, GÓRECKA-DRZAZGA A, DZIUBAN J A. Glow-discharge ion-sorption micropump for vacuum MEMS[J]. Sensors and Actuators A: Physical, 2014, 208: 113-119.
[35] GRZEBYK T, KNAPKIEWICZ P, SZYSZKA P, et al.MEMS ion-sorption high vacuum pump[C]//Journal of Physics: Conference Series. PowerMEMS 2016. Paris: IOP, 2016, 773: 012047.
[36] GRZEBYK T, GÓRECKA-DRZAZGA A, DZIUBAN J A. Low vacuum MEMS ion-sorption micropump[J]. Procedia Engineering, 2016, 168: 1593-1596.
[37] BASU A, PEREZ M A, VELÁSQUEZ-GARCÍA L F. Nanostructured silicon field emitter array-based high-vacuum magnetic-less ion pump for miniaturized atomic spectroscopy sensors[C]//2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems. Anchorage, AK, USA: IEEE, 2015: 1021-1024.
[38] JANG D.Carbon nanotube-based field ionization vacuum pump[D]. Cambridge, USA: Mass Inst Technol, 2012.
[1] 李平川, 许丽, 赵杰, 张帆, 熊思维, 简毅, 张正浩, 唐德礼. 微型化阳极层推力器数值模拟与性能实验*[J]. 真空, 2023, 60(4): 36-41.
[2] 任昌青, 徐法俭, 黄志婷, 袁铮, 张泽升. 以场景为设计输入的螺杆干式真空-压缩系统研究*[J]. 真空, 2023, 60(3): 46-50.
[3] 杜善国, 李博, 李强, 许有民. 机械真空泵除尘系统的设计和优化改进[J]. 真空, 2023, 60(3): 51-54.
[4] 李正清, 王小军, 韩仙虎, 蔡宇宏, 李小金, 杨建斌. 罗茨真空泵圆弧型转子型线设计及加工*[J]. 真空, 2023, 60(1): 36-41.
[5] 孙坤, 李坤, 汪森辉, 王成, 王龙, 来永斌. “双碳”愿景下螺杆真空泵的设计与对策*[J]. 真空, 2023, 60(1): 57-61.
[6] 张宝夫, 于洋, 高逊懿, 李金建, 王建国, 王玲玲. 高压差罗茨泵组合抽气系统在大型减压蒸馏深拔装置的应用[J]. 真空, 2022, 59(5): 45-49.
[7] 刘明昆, 李丹童, 邢子文. 双螺杆真空泵内压缩转子结构研究现状*[J]. 真空, 2022, 59(4): 28-32.
[8] 赵玺皓, 赵利壮, 王君, 李雪琴, 崔锋, 王增丽, 耿茂飞. 双螺杆真空泵新型正弦螺旋线型螺杆转子的设计与分析*[J]. 真空, 2022, 59(3): 1-6.
[9] 马义刚, 李智慧. 超高真空和高真空技术的应用[J]. 真空, 2021, 58(4): 98-102.
[10] 齐大伟, 李伟华, 李传旭, 吴斌, 陈德江, 唐志共. 大型风洞用离心真空泵气动设计[J]. 真空, 2021, 58(4): 49-53.
[11] 张龙河. 油封式旋片真空泵常见故障分析及处理方法[J]. 真空, 2021, 58(3): 17-22.
[12] 吕乾乾, 孙振川, 周建军, 杨振兴, 陈瑞祥, 游慧杰. 低真空管道系统性能室内实验研究*[J]. 真空, 2021, 58(3): 7-12.
[13] 刘蒙, 吴建龙, 赵腾, 朱浪涛, 曹海玲, 张明, 马正峰, 张咪, 付登峰. 机械真空泵远程故障诊断系统研究与应用*[J]. 真空, 2021, 58(2): 48-51.
[14] 徐法俭, 黄志婷, 刘宝新. 基于热力学理论液环压缩系统设计方法及工程应用[J]. 真空, 2020, 57(5): 79-84.
[15] 翟云飞, 张世伟, 孙坤, 赵凡, 张志军, 韩进, 张莉, 张永炬. 螺杆真空泵内气体热力过程的解析计算与实验研究[J]. 真空, 2020, 57(3): 54-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .