欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (1): 1-9.doi: 10.13385/j.cnki.vacuum.2024.01.01

• 薄膜 •    下一篇

脉冲阴极弧等离子体及有关特性研究

武洪臣, 杨丽媛   

  1. 中国航发北京航空材料研究院,北京 100095
  • 收稿日期:2023-05-25 出版日期:2024-01-25 发布日期:2024-01-24
  • 作者简介:武洪臣( 1964-),男,河北省滦南县人,博士,研究员。

Research on Pulsed Cathodic Arc Plasma and the Related Characteristics

WU Hong-chen, YANG Li-yuan   

  1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2023-05-25 Online:2024-01-25 Published:2024-01-24

摘要: 阴极弧(Cathodic Arcs)是目前多种薄膜及涂层制备工艺的重要物质来源。从阴极表面起弧形成阴极斑点、产生等离子体(相变)、等离子体在真空室中的扩展(输运),到最终在施加偏压的基体上沉积、凝聚形成涂层或薄膜,这一系列环节包含着复杂的物理过程。对这些过程及相关机制的深入分析与认识,无疑会对涂层制备工艺起到重要的理论指导作用。本文简要回顾了人类对阴极弧有关的放电现象的认识过程以及相关涂层的发展历史。对阴极放电机制以及与涂层工艺密切相关的等离子体行为,诸如脉冲阴极弧等离子体速度、鞘层、斜入射与附着系数等问题进行了探讨与实验结果的汇总。旨在为读者对阴极弧及其涂层工艺提供感性认识,为指导科研生产实践服务。

关键词: 阴极弧, 脉冲阴极弧等离子体, 等离子体鞘层, 斜入射, 附着系数

Abstract: Cathodic arc is an important material source for a variety of film and coating preparation processes. From the cathode spot on the cathode surface, the generation (phase transition) and expansion (transport) of plasma in the vacuum chamber, to the final deposition on the biased substrate to form a coating or film, this series of links contain complex physical processes. Deeply analyzing and understanding of the processes and related mechanisms will undoubtedly play an important role in guiding the coating preparation process. This paper briefly introduces the process of the discharge phenomena and the history of the related coatings development. Then the cathode discharge mechanism and the plasma behaviors closely related to the coating process, such as plasma velocity, sheath, oblique incidence and attachment coefficient are discussed. The aim is to help readers form a clear physical image and context for the process of cathode arc and its coating formation, and serve to guide the practice of scientific research and production.

Key words: cathode arc, pulsed cathodic arc plasma, plasma sheath, oblique incidence, attachment coefficient

中图分类号:  O539;TB43

[1] ANDERS A.Cathodic arcs: from fractal spots to energetic condensation[M]. New York: Springer Inc, 2008.
[2] DIBNER B.Galvani Volta: a controversy that led to the discovery of useful electricity[M]. Norwalk, Connecticut: Burndy Library, 1952.
[3] MEYER H W.A history of electricity and magnetism[M]. Norwalk, Connecticut: Burndy Library, 1971.
[4] BOWERS B.A history of electric light and power[M]. London: Peter Peregrinus Ltd., 1991.
[5] HEILBRON J L.Electricity in the 17th and 18th Centuries[M]. New York: Dover Publications, 1999.
[6] 安德瑞·安德斯. 阴极弧:从分形弧斑到荷能凝聚[M]. 武洪臣, 译. 北京:航空工业出版社, 2022.
[7] ANDERS A.Tracking down the origin of arc plasma physics I. Early pulsed and oscillating discharges[J]. IEEE Transactions on Plasma Science, 2003, 31(5): 1052-1059.
[8] ANDERS A.Tracking down the origin of arc plasma physics II. Early continuous discharges[J]. IEEE Transactions on Plasma Science, 2003, 31(5): 1060-1069.
[9] BUTTOLPH L J.The Cooper Hewitt mercury vapor lamp[J]. Gen Elec Rev, 1920, 23: 741-751.
[10] TONKS L.The birth of ''plasma''[J].American Journal of Physics, 1967, 35(9): 857-858.
[11] 马腾才, 胡希伟, 陈银华, 等. 等离子体物理原理[M]. 北京:中国科学技术大学出版社, 2012.
[12] DRYVESTEYN M J.Electron emission of the cathode of an arc[J]. Nature, 1936, 137: 580.
[13] AKSENOV I I, ANDREEV A A.Vacuum arc coating technologies at NSC KIPT[J]. Problems Atomic Sci. Technol, 1999, 3: 242-246.
[14] HANTZSCHE E.Theories of cathode spots[M]// Boxman R L, Martin P J, Sanders D M. Handbook of vacuum arc science and technology. Noyes, Park Ridge, New Jersey: William Andrew, 1995.
[15] 徐学基, 诸定昌. 气体放电物理[M]. 上海:复旦大学出版社, 1996.
[16] SCHÜLKET, SIEMROTH P. Vacuum arcs cathode spots as a self-similarity phenomenon[J]. IEEE Transactions on Plasma Science, 1996, 24: 63-64.
[17] SIEMROTH P, SCHÜLKE T, WITKE T. Investigations of cathode spots and plasma formation of vacuum arcs by high speed microscopy and spectrography[J]. IEEE Transactions on Plasma Science, 1997, 25: 571-579.
[18] BURKHARD J.The dynamics of arc cathode spots in vacuum. Part III: measurements with improved resolution and UV radiation[J]. Journal of Physics D: Applied Physics,1995, 28: 516-522.
[19] HARRIS L P.Transverse forces and motions at cathode spots in vacuum[J]. IEEE Transactions on Plasma Science, 1983, 11: 94-102.
[20] ANDERS A, ANDERS S, JÜTTNER B, et al. Pulsed dye laser diagnostics of vacuum arc cathode spots[J]. IEEE Transactions on Plasma Science, 1992, 20:466-472.
[21] ANDERS A, ANDERS S, JÜTTNER B, et al. High-resolution imaging of vacuum arc cathode spots[J]. IEEE Transactions on Plasma Science, 1996, 24: 69-70.
[22] VOGEL N.The cathode spot plasma in low-current air and vacuum break arcs[J]. Journal of Physics D: Applied Physics, 1993, 26: 1655-1661.
[23] JÜTTNER B. The dynamics of arc cathode spots in vacuum. Part III: Measurements with improved resolution and UV radiation[J]. Journal of Physics D: Applied Physics,1998, 31: 1728-1736.
[24] KLEBERG I.Dynamics of cathode spots in external magnetic field[D]. Berlin, Germany:Humboldt University, 2001.
[25] MESYATS G A.Ecton mechanism of the vacuum arc cathode spot[J]. IEEE Transactions on Plasma Science, 1995, 23: 879-883.
[26] MESYATS G A.Ecton or electron avalanche from metal[J]. Physics-Uspekhi (Advances in Physical Sciences), 1995, 38: 567-590.
[27] IVANOV V A, JÜTTNER B, PURSCH H. Time-resolved measurements of the parameters of arc cathode plasmas in vacuum[J]. IEEE Transactions on Plasma Science, 1985, 13: 334-336.
[28] JÜTTNER B. Characterization of the cathode spot[J]. IEEE Transactions on Plasma Science, 1987, 15:474-480.
[29] TSURUTA K, SKIYA K, WATANABE G.Velocities of copper and silver ions generated from an impulse vacuum arc[J]. IEEE Transactions on Plasma Science, 1997, 25: 603-608.
[30] BUGAEV A S, GUSHENETS V I, NIKOLAEV A G, et al.Influence of a current jump on vacuum arc parameters[J]. IEEE Transactions on Plasma Science, 1999, 27: 882-887.
[31] BUGAEV A S, OKS E M, YUSHKOV G Y, et al.Enhanced ion charge states in vacuum arc plasmas using a "current spike" method[J]. Review of Scientific Instruments, 2000, 71(2):701-703.
[32] YUSHKOV G Y, ANDERS A, OKS E M, et al.Ion velocities in vacuum arc plasmas[J]. Journal of Applied Physics, 2000, 88(10): 5618-5622.
[33] ANDERS A, OKS E.Charge-state-resolved ion energy distribution functions of cathodic vacuum arcs: a study involving the plasma potential and biased plasmas[J].Journal of Applied Physics, 2007, 101(4):43304.
[34] 武洪臣. 动态鞘层长探针检测及保形增强沉积工艺初步探索[D] 大连: 大连理工大学, 2008.
[35] ANDERS A, YUSHKOV G Y .Ion flux from vacuum arc cathode spots in the absence and presence of magnetic field[J]. Journal of Applied Physics, 2002, 91(8):4824-4832.
[36] LANGMUIR I.Positive ion currents from the positive column of mercury arcs[J]. Science, 1923,58(152):290-291.
[37] BRUTSCHER J, GÜNZEL R, MLLER W. Sheath dynamics in plasma immersion ion implantation[J]. Plasma Sources Science and Technology, 1996, 5(1):54-60.
[38] KIM Y W, KIM G H, HAN S, et al.Measurement of sheath expansion in plasma source ion implantation[J].Surface & Coatings Technology, 2001, 136(1/2/3): 97-101.
[39] YATSUZUKA M, MIKI S, MORITA R, et al.Spatial and temporal growth and collapse in a PBII plasma[J]. Surface & Coatings Technology, 2001, 136(1/2/3):93-96.
[40] WU H C, ANDERS A.Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma[J]. Plasma Sources Science and Technology, 2008, 17(3):035030.
[41] MATTOX D M.Particle bombardment effects on thin-film deposition: a review[J]. Journal of Vacuum Science & Technology A, 1989, 7: 1105-1114.
[42] WU H C, ANDERS A.Energetic deposition of metal ions: observation of self-sputtering and limited sticking for off-normal angles of incidence[J]. Journal of Physics D: Applied Physics, 2010, 43: 065206.
[1] 黄传鑫, 辛纪英, 田中俊, 王猛, 吕凯凯, 梁兰菊, 刘云云. 氧气等离子体处理提升InZnO材料及TFT电学性能和稳定性研究*[J]. 真空, 2023, 60(4): 24-28.
[2] 姜开银, 杨丽珍, 刘忠伟, 张海宝, 陈强. 螺旋波等离子体源中离子能量及其诊断*[J]. 真空, 2021, 58(4): 67-76.
[3] 王坤, 王世庆, 李建, 但敏, 陈伦江. 磁控溅射制备紧固件防咬死涂层的厚度均匀性研究*[J]. 真空, 2021, 58(1): 67-71.
[4] 殷冀平, 乔宏, 蔺增, 巴德纯. 基于LabVIEW的朗缪尔单探针数据处理系统[J]. 真空, 2020, 57(6): 48-53.
[5] 李建, 童洪辉, 但敏, 金凡亚, 王坤, 陈伦江. 场致发射电子源的应用及其研究进展[J]. 真空, 2019, 56(3): 27-31.
[6] ВВ.А.ШАПОВАЛОВ, 许小海, 汪源, 孙足来, 宋青竹, 李建军. 等离子体技术在冶炼和铸造生产中的应用*[J]. 真空, 2019, 56(5): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .