欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (4): 24-28.doi: 10.13385/j.cnki.vacuum.2023.04.05

• 薄膜 • 上一篇    下一篇

氧气等离子体处理提升InZnO材料及TFT电学性能和稳定性研究*

黄传鑫1, 辛纪英2, 田中俊1, 王猛1, 吕凯凯1, 梁兰菊1, 刘云云1   

  1. 1.枣庄学院光电工程学院,山东 枣庄 277160;
    2.枣庄学院 后勤服务处,山东 枣庄 277160
  • 收稿日期:2022-11-05 出版日期:2023-07-25 发布日期:2023-07-26
  • 通讯作者: 刘云云,副教授。
  • 作者简介:黄传鑫(1989-),男,山东临沂人,博士,讲师。
  • 基金资助:
    *山东省自然科学青年基金(ZR2021QF081); 枣庄学院博士启动项目(1020716)

Improvement of the Electrical Performance and Stability of InZnO Material and TFT by Oxygen Plasma Processing

HUANG Chuan-xin1, XIN Ji-ying2, TIAN Zhong-jun1, WANG Meng1, LÜ Kai-kai1, LIANG Lan-ju1, LIU Yun-yun1   

  1. 1. College of Optoelectronic Engineering, Zaozhuang University, Zaozhuang 277160, China;
    2. Back Office, Zaozhuang University, Zaozhuang 277160, China
  • Received:2022-11-05 Online:2023-07-25 Published:2023-07-26

摘要: 氧化物薄膜晶体管(TFT)是有源矩阵有机发光二极管的核心驱动元件,是现今开发新型显示器的关键技术,在平板显示方面具有广阔的应用前景。但氧化物半导体中存在大量由氧空位引起的缺陷态,从而影响了TFT器件的性能及稳定性,成为其商业化进程的瓶颈。本文通过磁控溅射方法制备了IZO TFT,并将其进行O2等离子体处理,研究了离子体处理对IZO薄膜及TFT性能的影响。结果表明:O2等离子体处理后IZO TFT迁移率由8.2cm2/(V·s)提高到9.5cm2/(V·s),阈值电压由-3.2V减小到-5.1V,亚阈值摆幅由0.45V/decade减小到0.38V/decade,开关比由2.3×107提高到4.4×107;在光照负偏压下,器件的阈值电压漂移量从7.1V降低到3.2V;在100℃老化条件下,器件的阈值电压漂移量从12.5V降低到6.4V;O2等离子体处理可以有效提高IZO TFT的电学性能和稳定性。

关键词: 薄膜晶体管, 磁控溅射, O2等离子体处理, 缺陷态, 稳定性

Abstract: Oxide thin film transistors(TFT) are the core driving components of active matrix organic light-emitting diodes, and are the key technology for developing new displays today. They have broad application prospects in flat panel displays. However, there are a large number of defect states in oxide semiconductors caused by oxygen vacancies, which destroy the performance and stability of TFT device, and become a bottleneck technical problem for its commercialization. Therefore, IZO TFT was prepared by RF-sputtering and treated with O2 plasma to study the effects of O2 plasma treatmert on IZO film and device performance and stability. The results show that after plasma treatment, the mobility of IZO TFT increases from 8.2cm2/(V·s) to 9.5cm2/(V·s), the threshold voltage changes from -3.2V to -5.1V, the sub-threshold swing decreases from 0.45V/decade to 0.38V/decade, and the switch ratio changes from 2.3×107 to 4.4×107. Under negative light bias, the threshold voltage drift of the device reduces from 7.1V to 3.2V. The threshold voltage drift of the device decreases from 12.5V to 6.4V when aging at 100℃. O2 plasma treatment can effectively improve the electrical performance and stability of IZO TFT.

Key words: thin film transistor, RF sputtering, O2 plasma treatment, defect, stability

中图分类号:  O539;TN386

[1] ZHU Y, HE Y L, JIANG S S, et al.Indium-gallium-zinc- oxide thin-film transistors: materials, devices, and applications[J]. Journal of Semiconductors, 2021, 42(3): 21-39.
[2] CHEN Q Z, SHI C Y, ZHAO M J, et al.Performance of transparent indium-gallium-zinc oxide thin film transistor prepared by all plasma enhanced atomic layer deposition[J]. IEEE Transactions on Electron Devices, 2023, 44(3): 448-451.
[3] NOMURA K, OHTA H, TAKAGI A, et al.Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432: 488-492.
[4] LEE S, PARK J, YANG G W, et al.Analysis of a-InGaZnO TFT threshold voltage instability and mobility boosting by current stress at a cryogenic temperature[J]. IEEE Electron Device Letters, 2023, 44(1): 88-91.
[5] WANG C, PENG C, WEN P, et al.Improvement of performance of back channel etching InGaZnO thin-film transistors by CF4 plasma treatment[J]. IEEE Transactions on Electron Devices, 2023, 70(4): 1687-1691.
[6] CHANG C H, LIU P T.Investigation on plasma treatment for transparent Al-Zn-Sn-O thin film transistor application[J]. Thin Solid Films, 2013, 549: 36-41.
[7] PU H F, ZHOU Q F, YUE L, et al.Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors[J]. Applied Surface Science, 2013, 283: 722-726.
[8] LIU P, CHEN T P, LIU Z, et al.Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films[J]. Thin Solid Films, 2013, 545: 533-536.
[9] FABER H, HIRSCHMANN J, KLAUMUÜNZER M, et al. Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1693-1696.
[10] YANG B S, PARK S, OH S, et al.Improvement of the photo-bias stability of the Zn-Sn-O field effect transistors by an ozone treatment[J]. Journal of Materials Chemistry, 2012, 22(22): 10994-10998.
[11] XU H Y, DING X W, QI J, et al.A study on solution-processed Y2O3 films modified by atomic layer deposition Al2O3 as dielectrics in ZnO thin film transistor[J]. Coatings, 2021, 11(8): 969.
[12] FAN C L, YANG T H, CHIU P C, et al.Organic thin-film transistor performance improvement using ammonia(NH3) plasma treatment on the gate insulator surface[J]. Solid-State Electronics, 2009, 53(2): 246-250.
[13] XU W D, ZHANG G Q, FENG X J.Effects of atomic-layer-deposition temperature on the properties of Al2O3 insulators and InAlZnO thin-film-transistors with dual-active-layer structure[J]. Applied Surface Science, 2021, 578: 151987.
[14] LIU M Y, QIN F, ROTHSCHILD M, et al.The effect of bias stress on the performance of amorphous InAlZnO-based thin film transistors[J]. Journal of Electronic Materials, 2022, 51: 1813-1819.
[15] CHOWDHURY M, MIGLIORATO P, JIN J.Temperature dependence of negative bias under illumination stress and recovery in amorphous indium gallium zinc oxide thin film transistors[J]. Applied Physics Letters, 2013, 102(14): 143506.
[16] FLEWITT A J, POWELL M J.A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination[J]. Journal of Applied Physics, 2014, 115(13): 134501.
[17] CHEN T C, CHANG T C, HSIEH T Y, et al.Analyzing the effects of ambient dependence for InGaZnO TFTs under illuminated bias stress[J]. Surface & Coatings Technology, 2013, 231: 465-470.
[18] KIM S, KIM H, KIM K, et al.Improvement of negative bias temperature instability of LTPS TFTs by high pressure H2O annealing[J]. Microelectronics Reliability, 2021, 116: 113963.
[19] PARK S Y, LEE S Y.Investigation of the stability and the transparency of oxide thin film transistor with bi-layer channels and oxide/metal/oxide multilayer source/drain electrodes[J]. Transactions on Electrical and Electronic Materials, 2022, 23: 187-192.
[20] RYU M K, PARK S, HWANG C S, et al.Comparative studies on electrical bias temperature instabilities of In-Ga-Zn-O thin film transistors with different device configurations[J]. Solid-State Electronics, 2013, 89: 171-176.
[1] 张艳鹏, 曹志强, 付强, 曹磊, 刘旭. 卷绕镀铜工艺对复合集流体电学性能影响研究[J]. 真空, 2023, 60(4): 8-12.
[2] 余康元, 何玉丹, 杨波, 罗江山. 溅射电压对高功率脉冲磁控溅射Cu箔微观结构及性能的影响*[J]. 真空, 2023, 60(3): 1-4.
[3] 张汉焱, 郑丹旭, 沈奕, 陈玉云. 中频磁控反应溅射氧化硅(SiOx)薄膜绝缘性的研究*[J]. 真空, 2023, 60(2): 34-38.
[4] 张健, 齐振华, 李建浩, 牛夏斌, 徐全国, 宗世强. 磁控溅射法制备ITO膜层及其光电性能研究[J]. 真空, 2022, 59(6): 45-50.
[5] 赵琦, 满玉岩, 李苏雅, 李松原, 李琳. 面向干式电抗器的氟碳纳米结构薄膜性能调控方法研究*[J]. 真空, 2022, 59(6): 51-55.
[6] 辛先峰, 刘林根, 林国强, 董闯, 丁万昱, 张爽, 王棋震, 李军, 万鹏. Zr55Cu30Al10Ni5非晶薄膜的制备与性能研究*[J]. 真空, 2022, 59(5): 1-6.
[7] 吴帅, 刘爽, 覃礼钊, 张旭, 张同华, 廖斌, 王可平. FCVAD技术制备CrCN薄膜的热稳定性研究[J]. 真空, 2022, 59(5): 14-19.
[8] 张健, 李建浩, 齐振华. 探究直流磁控溅射下工艺参数对SiC薄膜性能的影响规律[J]. 真空, 2022, 59(4): 52-55.
[9] 张辉, 王晓波, 张炜鑫, 巩春志, 田修波. 基体偏压模式对CrN薄膜结构和阻氢性能的影响*[J]. 真空, 2022, 59(1): 18-23.
[10] 刘沅东. 磁控溅射制备大面积ZnO薄膜性能的研究[J]. 真空, 2022, 59(1): 29-32.
[11] 朱蓓蓓, 倪昌, 秦琳, 楚建宁, 陈肖, 许剑锋. 基于磁控溅射的纳米金属薄膜沉积工艺研究*[J]. 真空, 2021, 58(6): 21-26.
[12] 贺平, 张旭, 杨洋. 不同基体材料筒体内壁磁控溅射膜层工艺研究[J]. 真空, 2021, 58(6): 33-37.
[13] 杨曌, 罗俊尧, 李保昌, 李淑华, 沓世我, 付振晓, 宁洪龙. 复合金属薄膜层对金丝键合性能的影响[J]. 真空, 2021, 58(6): 43-47.
[14] 魏梦瑶, 王辉, 韩文芳, 王红莉, 苏一凡, 唐春梅, 代明江, 石倩. 中频磁控溅射制备氧化钨薄膜及电致变色性能研究*[J]. 真空, 2021, 58(5): 50-56.
[15] 张晓霞, 邓金祥, 孔乐, 李瑞东, 杨子淑, 张杰. 不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究*[J]. 真空, 2021, 58(5): 57-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .