欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (5): 6-20.doi: 10.13385/j.cnki.vacuum.2024.05.02

• 薄膜 • 上一篇    下一篇

基于仿生结构的柔性应变传感器研究进展*

潘亮, 李建昌   

  1. 东北大学机械工程与自动化学院 真空流体工程研究中心,辽宁 沈阳 110819
  • 收稿日期:2023-11-14 出版日期:2024-09-25 发布日期:2024-10-10
  • 通讯作者: 李建昌,教授,博导。
  • 作者简介:潘亮(1998-),男,辽宁省沈阳市人,硕士。
  • 基金资助:
    *国家自然科学基金(51773030)

Research Progress of Flexible Strain Sensors Based on Biomimetic Structures

PAN Liang, LI Jian-chang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2023-11-14 Online:2024-09-25 Published:2024-10-10

摘要: 柔性应变传感器作为可穿戴设备的核心部件,在各个领域发挥着尤为重要的作用。但现有传感器功能受限于传统导电层结构,故研究人员将自然界动植物微纳结构引入到传感器中赋予其更为优异的性能。本文从功能层结构、制备方法及仿生结构等方面对仿生柔性应变传感器的研究进展进行了综述。首先归纳了柔性应变传感器的导电层结构和提升其耐用性的方法;其次总结了仿生柔性应变传感器的多种制备方法;最后从动物、植物及构件三方面论述了传感器的仿生结构类型。未来应致力于开发更有效复制动植物微结构的生产制备工艺,完善应用于应变传感器的仿生种类,以期使应变传感器在提升优异电学性能的同时获得与生物更为相近的仿生功能。

关键词: 柔性电子, 应变传感器, 功能层, 仿生结构

Abstract: As the core component of wearable devices, the flexible strain sensors play a particularly important role in various fields. However, the function of the existing sensor is limited by the traditional conductive layer structure. A large number of researchers have introduced the micro-nano structure of animals and plants in nature into the sensor to give it more excellent performance. In this paper, the research progress of bionic flexible strain sensor is reviewed from the aspects of functional layer structure, preparation method and bionic structure. Firstly, the conductive layer structure of flexible strain sensor and the method of improving durability are summarized. Secondly, the preparation methods of bionic flexible strain sensors are concluded. Finally, the bionic structure types of the sensor are discussed from three aspects: animals, plants and components. In order to improve the excellent electrical properties of the strain sensor while obtaining more similar biological functions to organisms, more efforts should be devoted to the development of production and preparation processes for more effective replication of animal and plant microstructures and the improvement of bionic types applied to strain sensors in the future.

Key words: flexible electronics, strain sensor, functional layer, biomimetic structure

中图分类号:  TB43

[1] GUO L N, WU G T, WANG Q Y, et al.Advances in triboelectric pressure sensors[J]. Sensors and Actuators A: Physical, 2023, 355: 114331.
[2] LI K, YANG W Y, YI M, et al.Graphene-based pressure sensor and strain sensor for detecting human activities[J]. Smart Materials and Structures, 2021, 30(8): 085027.
[3] XIANG C, LU Y L, YAN P C, et al.A resonant pressure microsensor with temperature compensation method based on differential outputs and a temperature sensor[J]. Micromachines, 2020, 11(11): 1022.
[4] CHEN M Y, XUE S, LIU L, et al.A highly stable optical humidity sensor[J]. Sensors and Actuators B: Chemical, 2019, 287: 329-337.
[5] LIU P, GAO Y N, WANG F Z, et al.Superhydrophobic and self-cleaning behavior of Portland cement with lotus-leaf-like microstructure[J]. Journal of Cleaner Production, 2017, 156: 775-785.
[6] JUNG Y C, BHUSHAN B.Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag[J]. ACS Nano, 2009, 3(12): 4155-4163.
[7] ZHU M J, SAKAMOTO K, LI J H, et al.Piezoresistive strain sensor based on monolayer molybdenum disulfide continuous film deposited by chemical vapor deposition[J]. Journal of Micromechanics and Microengineering, 2019, 29(5): 055002.
[8] 申玮, 张文君, 廉宇琦, 等. 高分辨率MEMS纤毛式湍流传感器[J]. 微纳电子技术, 2019, 56(11): 911-917.
[9] TAKEI K, YU Z, ZHENG M, et al.Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1703-1707.
[10] ZHOU Q, JI B, WEI Y, et al.A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range[J]. Journal of Materials Chemistry A, 2019, 7(48): 27334-27346.
[11] KWON Y, PARK C, KIM J, et al.Effects of bending strain and crack direction on crack-based strain sensors[J]. Smart Materials and Structures, 2020, 29(11): 115007.
[12] HAN Z, LIU L, ZHANG J, et al.High-performance flexible strain sensor with bio-inspired crack arrays[J]. Nanoscale, 2018, 10(32): 15178-15186.
[13] SHI J D, LI X M, CHENG H Y, et al.Graphene reinforced carbon nanotube networks for wearable strain sensors[J]. Advanced Functional Materials, 2016, 26(13): 2078-2084.
[14] TADAKALURU S, KUMPIKA T, KANTARAK E, et al.Highly stretchable and sensitive strain sensors using nano-graphene coated natural rubber[J]. Plastics, Rubber and Composites, 2017, 46(7): 301-305.
[15] SAYED S, GAMIL M, EL-BAB A F, et al. Graphene film development on flexible substrate using a new technique: temperature dependency of gauge factor for graphene-based strain sensors[J]. Sensor Review, 2016, 36(2): 140-147.
[16] NIU H S, ZHANG H Y, YUE W J, et al.Micro-nano processing of active layers in flexible tactile sensors via template methods: a review[J]. Small, 2021, 17(41): 2100804.
[17] CHOONG C L, SHIM M B, LEE B S, et al.Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014, 26(21): 3451-3458.
[18] LIU Y F, FU Y F, LI Y Q, et al.Bio-inspired highly flexible dual-mode electronic cilia[J]. Journal of Materials Chemistry B, 2018, 6(6): 896-902.
[19] ZHANG X Y, HU Y G, GU H, et al.A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(9): 1900367.
[20] 张栋凯, 吴凯, 刘刚. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 201-208.
[21] LETERRIER Y, MOTTET A, BOUQUET N, et al.Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings[J]. Thin Solid Films, 2010, 519(5): 1729-1737.
[22] KIMA S R, JOHN A N.Fracture mechanics analysis of coating/substrate systems part I: analysis of tensile and bending experiments[J]. Engineering Fracture Mechanics, 2000, 65: 573-593.
[23] MILLER D C, FOSTER R R, ZHANG Y, et al.The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates[J]. Journal of Applied Physics, 2009, 105(9): 093527.
[24] EOM J, HEO J S, KIM M, et al.Highly sensitive textile-based strain sensors using poly(3,4-ethylenedioxythiophene): polystyrene sulfonate/silver nanowire coated nylon threads with poly-l-lysine surface modification[J]. RSC Advances, 2017, 7: 53373-53378.
[25] IKJOO B, ANTHONY W C, KIM B.Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl) trimethoxy silane (MPTMS) as a molecular adhesive[J]. Journal of Micromechanics and Microengineering, 2013, 23: 085016.
[26] FANG F Y, WANG H, WANG H Q, et al.Stretchable MXene/thermoplastic polyurethanes based strain sensor fabricated using a combined electrospinning and electrostatic spray deposition technique[J]. Micromachines, 2021, 12(3): 252.
[27] LAURENS T D H, PHILIPPE L, PASCAL D, et al. On-demand wrinkling patterns in thin metal films generated from self-assembling liquid crystals[J]. Advanced Functional Materials, 2015, 25(9): 1360-1365.
[28] BAE S H, LEE Y, SHARMA B K, et al.Graphene-based transparent strain sensor[J]. Carbon, 2013, 51: 236-242.
[29] HUANG Z Y, HONG W,SUO Z.Nonlinear analyses of wrinkles in a film bonded to a compliant substrate[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(9): 2101-2118.
[30] CHEN C M, YANG S.Wrinkling instabilities in polymer films and their applications[J]. Polymer International, 2012, 61(7): 1041-1047.
[31] PARK H G, JEONG H C, JUNG Y H, et al.Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment[J]. Scientific Reports, 2015, 5: 12356.
[32] THOMAS A V, ANDOW B C, SURESH S, et al.Controlled crumpling of graphene oxide films for tunable optical transmittance[J]. Advanced Materials, 2015, 27(21): 3256-65.
[33] YU Y, YE L, SONG Y M, et al.Wrinkled nitrile rubber films for stretchable and ultra-sensitive respiration sensors[J]. Extreme Mechanics Letters, 2017, 11:128-136.
[34] XIAO W, WANG L, LI B, et al.Interface-engineered reduced graphene oxide assembly on nanofiber surface for high performance strain and temperature sensing[J]. Journal of Colloid and Interface Science, 2022, 608: 931-941.
[35] LI M, YAN Y, XU S, et al.Surface effect on the necking of hyperelastic materials[J]. Current Applied Physics, 2022, 38: 91-98.
[36] YAN J, MA Y, LI X, et al.Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure[J]. Ceramics International, 2020, 46(15): 23592-23598.
[37] NGUYEN T, CHU M, TU R, et al.The effect of encapsulation on crack-based wrinkled thin film soft strain sensors[J]. Materials, 2021, 14(2): 364.
[38] HELLEMANS A.Cracks: more than just a clean break[J]. Science, 1998, 281(5379): 943-944.
[39] WILLIAM J C.Controlling cracks in ceramics[J]. Materials Science, 1999, 5(286): 1097-1099.
[40] KANG D, PIKHITSA P V, CHOI Y W, et al.Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system[J]. Nature, 2014, 516(7530): 222-226.
[41] ZHANG J, SUN T, LIU L, et al.Flexible and highly sensitive pressure sensors based on microcrack arrays inspired by scorpions[J]. RSC Advances, 2019, 9(39): 22740-22748.
[42] LEE T, CHOI Y W, LEE G, et al.Crack-based strain sensor with diverse metal films by inserting an inter-layer[J]. RSC Advances, 2017, 7(55): 34810-34815.
[43] 李梦迪. 基于微裂纹结构的高灵敏度柔性应变传感器研究及应用[D]. 合肥:合肥工业大学,2021.
[44] CHEN Z, LIU X, WANG S, et al.A bioinspired multilayer assembled microcrack architecture nanocomposite for highly sensitive strain sensing[J]. Composites Science and Technology, 2018, 164: 51-58.
[45] JIAN M, XIA K, WANG Q, et al.Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials, 2017, 27(9): 22740-22748.
[46] LIU L P, NIU S C, ZHANG J Q, et al.Bioinspired, omnidirectional and hypersensitive flexible strain sensors[J]. Advanced Materials, 2022, 34(17): 2200823.
[47] SOURI H, BANERJEE H, JUSUFI A, et al.Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications[J]. Advanced Intelligent Systems, 2020, 2(8): 2000039.
[48] DONG X, TONG S, DAI K, et al.Preparation of PVA/PAM/Ag strain sensor via compound gelation[J]. Journal of Applied Polymer Science, 2021, 139(14): 51883.
[49] YI Y, WANG B, LIU X, et al.Flexible piezoresistive strain sensor based on CNTs-polymer composites: a brief review[J]. Carbon Letters, 2022, 32(3): 713-726.
[50] AZHARI S, TERMEH Y A, TANAKA H, et al.Fabrication of piezoresistive based pressure sensor via purified and functionalized CNTs/PDMS nanocomposite: toward development of haptic sensors[J]. Sensors and Actuators A: Physical, 2017, 266: 158-165.
[51] SHI Z, LI A, ZHANG C, et al.Reduced graphene oxide coated polyurethane composite foams as flexible strain sensors for large deformation[J]. Materials Science and Engineering: B, 2021, 272: 115360.
[52] XU X, CHEN Y, HE P, et al.Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring[J]. Nano Research, 2021, 14(8): 2875-2883.
[53] ZHANG L, JIANG F, WANG L, et al.High performance flexible strain sensors based on silver nanowires/thermoplastic polyurethane composites for wearable devices[J]. Applied Composite Materials, 2022, 29(4): 1621-1636.
[54] JING X, MI H Y, PENG X F, et al.Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry[J]. Carbon, 2018, 136: 63-72.
[55] RAHMANI P, SHOJAEI A.A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors[J]. Advanced Colloid Interface Science, 2021, 298: 102553.
[56] SU G, CAO J, ZHANG X, et al.Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human-machine interface[J]. Journal of Materials Chemistry A, 2020, 8(4): 2074-2082.
[57] LIN S T, LIU X Y, LIU J, et al.Anti-fatigue-fracture hydrogels[J]. Science Advances, 2019, 5(1): 8528.
[58] 吕慧丹. 两种功能纳米材料的模板法制备及应用研究[D]. 长沙:中南大学, 2011.
[59] TURCO A, MONTEDURO A G, MONTAGNA F, et al.The effect of synthetic conditions on piezoresistive properties of ultrasensitive carbon nanotube/PDMS 3D composites[J]. Polymer, 2023, 264: 125534.
[60] SU B, GONG S, MA Z, et al.Mimosa-inspired design of a flexible pressure sensor with touch sensitivity[J]. Small, 2015, 11(16): 1886-1891.
[61] WANG D, ZHOU X, SONG R, et al.Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring[J]. Chemical Engineering Journal, 2021, 404: 126940.
[62] YANG Y, SONG X, LI X, et al.Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30: 1706539.
[63] MARTIN J J, FIORE B E,ERB R M.Designing bioinspired composite reinforcement architectures via 3D magnetic printing[J]. Nature Communications, 2015, 6: 8641.
[64] SONG J, REICHERT S, KALLAI I, et al.Quantitative microstructural studies of the armor of the marine threespine stickleback (gasterosteus aculeatus)[J]. Journal of Structural Biology, 2010, 171(3): 318-331.
[65] SALEH M S, HU C, PANAT R.Three-dimensional micro architected materials and devices using nanoparticle assembly by pointwise spatial printing[J]. Science Advances, 2017, 3(3): 1601986.
[66] ZHAO Y, GUO X, HONG W, et al.Biologically imitated capacitive flexible sensor with ultrahigh sensitivity and ultralow detection limit based on frog leg structure composites via 3D printing[J]. Composites Science and Technology, 2023, 231: 109837.
[67] 武建龙, 胡江荣, 鲍萌萌, 等. 基于专利数据的全球光刻技术竞争态势研究[J]. 科技与管理, 2023, 25(1): 1-12.
[68] SUN J, BHUSHAN B.The structure and mechanical properties of dragonfly wings and their role on flyability[J]. Comptes Rendus Mécanique, 2012, 340(1-2): 3-17.
[69] SUN Z, YANG S, ZHAO P, et al.Skin-like ultrasensitive strain sensor for full-range detection of human health monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13287-13295.
[70] MUJAHID A, IQBAL N,AFZAL A.Bioimprinting strategies: from soft lithography to biomimetic sensors and beyond[J]. Biotechnol Advances, 2013, 31(8): 1435-1447.
[71] YIN K, DONG X, ZHANG F, et al.Superamphiphobic miniature boat fabricated by laser micromachining[J]. Applied Physics Letters, 2017, 110(12): 121909.
[72] LIU Y Q, ZHANG J R, HAN D D, et al.Versatile electronic skins with biomimetic micronanostructures fabricated using natural reed leaves as templates[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38084-38091.
[73] KE P, JIAO X N, GE X H, et al.From macro to micro: structural biomimetic materials by electrospinning[J]. RSC Advances, 2014, 4(75): 39704-39724.
[74] 管山, 盖广清. 静电纺丝技术在各领域中的应用[J]. 化工技术与开发,2022,51(12):57-60.
[75] LIFKA S, HARSANYI K, BAUMGARTNER E, et al.Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders[J]. Beilstein Journal of Nanotechnology, 2022, 13: 1268-1283.
[76] BEREGOI M, BEAUMONT S, EVANGHELIDIS A, et al.Bioinspired polypyrrole based fibrillary artificial muscle with actuation and intrinsic sensing capabilities[J]. Scientific Reports, 2022, 12(1): 15019.
[77] ZHANG J H, LI Y, HAO X.A high-performance triboelectric nanogenerator with improved output stability by construction of biomimetic superhydrophobic nanoporous fibers[J]. Nanotechnology, 2020, 31(21): 215401.
[78] YAN J F, MA Y N, JIA G, et al.Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2022, 431: 133458.
[79] RODRIGUES J R, ALVES N M,MANO J F.Nacre-inspired nanocomposites produced using layer-by-layer assembly: design strategies and biomedical applications[J]. Materials Science and Engineering C, 2017, 76: 1263-1273.
[80] YARAGHI N A,KISAILUS D.Biomimetic structural materials: inspiration from design and assembly[J]. Annual Review of Physical Chemistry, 2018, 69: 23-57.
[81] CHEN L, LI X, ZHANG A P, et al.Characterization, a dsorption properties and mechanism of modified sophora japonica leaves to benzene[J]. Chinese Journal of Structural Chemistry, 2019, 38(9): 1474-1484.
[82] LEI Z, WANG Q, SUN S, et al.A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing[J]. Advanced Materials, 2017, 29(22): 1700321.
[83] LIU L X, CHEN W, ZHANG H B, et al.Flexible and multifunctional silk textiles with biomimetic leaf‐like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self‐derived hydrophobicity[J]. Advanced Functional Materials, 2019, 29(44): 1905197.
[84] MIAO L M, WAN J, SONG Y, et al.Skin-inspired humidity and pressure sensor with a wrinkle-on sponge structure[J]. Applied Materials Interfaces, 2019,11: 39219-39227.
[85] GUO Y, GUO Z, ZHONG M, et al.A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing[J]. Small, 2018, 14(44): 1803018.
[86] ZHANG H, REN P, YANG F, et al.Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions[J]. Journal of Materials Chemistry B, 2020, 8(46): 10549-10558.
[87] 张哲. MXene/PDMS基纤毛阵列柔性压阻传感器变温疲劳特性探究[D]. 沈阳:东北大学,2022.
[88] CHOI Y W, KANG D, PIKHITSA P V, et al.Ultra-sensitive pressure sensor based on guided straight mechanical cracks[J]. Scientific Reports, 2017, 7: 40116.
[89] SONG H, ZHANG J, CHEN D, et al.Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks[J]. Nanoscale, 2017, 9(3): 1166-1173.
[90] JONGHWA P, YOUNGOH L, JAEHYUNG H, et al.Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures[J]. ACS Nano, 2014, 8(12): 12020-12029.
[91] XIE Z, DOMEL A G, AN N, et al.Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robot, 2020, 7(5): 639-648.
[92] CHUN S, SON W, KIM D W, et al.Water-resistant and skin-adhesive wearable electronics using graphene fabric sensor with octopus-inspired microsuckers[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16951-16957.
[93] SHI J, WANG L, DAI Z, et al.Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small, 2018, 14(27): 1800819.
[94] WEI Y, CHEN S, LIN Y, et al.Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure[J]. Journal of Materials Chemistry C, 2015, 3(37): 9594-9602.
[95] QIU Z G, WAN Y B, ZHOU W H, et al.Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[96] NIE P, WANG R, XU X, et al.High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14911-14919.
[97] WANG Z Y, LIU T, YU Y, et al.Coffee ring-inspired approach toward oriented self assembly of biomimetic Murray MOFs as sweat biosensor[J]. Small, 2018, 14(45): 1802670.
[98] GUAN X, WANG Z Y, ZHAO W Y, et al.Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26137-26144.
[99] KANG S, LEE J, LEE S, et al.Highly sensitive pressure sensor based on bioinspired porous structure for real-time tactile sensing[J]. Advanced Electronic Materials, 2016, 2(12): 1600356.
[1] 张哲, 李建昌. 微阵列结构柔性压力传感器研究进展*[J]. 真空, 2023, 60(5): 13-16.
[2] 秦丽丽, 董茂进, 冯煜东, 韩仙虎, 蔡宇宏, 王毅, 李小金, 马凤英. 超高水氧阻隔膜研究进展*[J]. 真空, 2023, 60(1): 23-29.
[3] 李建鹏, 张驰, 李建昌. 柔性电子器件疲劳特性的研究进展*[J]. 真空, 2021, 58(5): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .