真空 ›› 2024, Vol. 61 ›› Issue (5): 21-29.doi: 10.13385/j.cnki.vacuum.2024.05.03
李婷玥, 王鑫, 甄真, 李娜, 许振华
LI Ting-yue, WANG Xin, ZHEN Zhen, LI Na, XU Zhen-hua
摘要: (Yb0.1Gd0.9)2Zr2O7(YbGdZrO)稀土复合氧化物是适用于更高温度的新型热障涂层(TBCs)候选材料之一。采用电子束物理气相沉积(EB-PVD)工艺在单晶合金(Ni,Pt)Al粘结层表面分别制备了单陶瓷层YbGdZrO和双陶瓷层YbGdZrO/YSZ两种热障涂层,并对涂层的相结构、化学组成、显微形貌和热循环行为进行了表征分析。结果表明:沉积态YbGdZrO陶瓷涂层的主相结构为单一的缺陷型萤石相,并有少量Yb2O3共存;与单陶瓷层涂层相比,双陶瓷层涂层的柱状晶簇较为纤细,且可观察到明显的柱状晶间隙;双陶瓷层涂层1100 ℃热循环寿命约为单陶瓷层涂层的1.5倍;经长期冷热交替循环后,单陶瓷层涂层内横向裂纹滋长,并扩展到YbGdZrO/TGO层界面上方几微米处,导致界面退化分离,且陶瓷层中的Yb元素内扩散进入TGO层;双陶瓷层涂层内出现纵向裂纹,而YbGdZrO/YSZ和YSZ/TGO层间界面基本完好;热循环失效后,单陶瓷层和双陶瓷层试样TGO层内均出现横向和纵向裂纹,甚至进一步诱发了层内断裂分离现象。
中图分类号: T32
[1] CAO X Q.Application of rare earths in thermal barrier coating materials[J]. Journal of Materials Science & Technology, 2007, 23: 15-35. [2] 常振东, 张婧, 牟仁德, 等. NiCrAlYSi粘结层合金相结构与性能研究[J]. 真空, 2022, 59(4): 41-47. [3] 戴建伟, 牟仁德, 何利民, 等. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29. [4] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1): 1-6. [5] LIU Y Z, ZHEN Z, WANG X, et al.Thermo-physical properties, morphology and thermal shock behavior of EB-PVD thermal barrier coating with DLC YbGdZrO/YSZ system[J]. Materials Today Communications, 2023, 35: 106265. [6] PADTURE N P, GELL M, JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280-284. [7] JUDE S A A, WINOWLINJAPPES J T, ADAMKHAN M. Thermal barrier coatings for high-temperature application on superalloy substrates: a review[J]. Materials Today: Proceedings, 2022, 60: 1670-1675. [8] 白明远, 王鑫, 甄真, 等. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究[J]. 真空, 2021, 58(4): 12-20. [9] GUO Y Q, HE W T, GUO H B.Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics[J]. Ceramics International, 2020, 46: 18888-18894. [10] DAI J W, HUANG B, HE L M, et al.Thermal cycling behavior and failure mechanism of Yb2O3-doped yttria-stabilized zirconia thermal barrier coatings[J]. Materials Today Communications, 2023, 34: 105409. [11] ZHEN Z, WANG X, SHEN Z Y, et al.Phase stability, thermo-physical property and thermal cycling durability of Yb2O3 doped Gd2Zr2O7 novel thermal barrier coatings[J]. Ceramics International, 2022, 48: 2585-2594. [12] GUO L, GUO H B, PENG H, et al.Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings[J]. Journal of the European Ceramic Society, 2014, 34: 1255-1263. [13] ZHANG Y, GUO L, ZHAO X X, et al.Toughening effect of Yb2O3 stabilized ZrO2 doped in Gd2Zr2O7 ceramic for thermal barrier coatings[J]. Materials Science & Engineering A, 2015, 648: 385-391. [14] 郭磊, 高远, 叶福兴, 等. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198. [15] LIU H, XU M M, LI S, et al.Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinummodified aluminide coating[J]. Journal of Materials Science & Technology, 2020, 54: 132-143. [16] GUO L, GUO H B, GONG S K, et al.Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping[J]. Ceramics International, 2013, 39(8): 9009-9015. [17] SWALIN R A.Thermdynamics of solids[M]. 2ed. New York: John Wiley & Sons, 1972: 53-87. [18] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10):2722-2732. [19] VASSEN R, JARLIGO M O, STEINKE T, et al.Overview on advanced thermal barrier coatings[J]. Surface & Coatings Technology, 2010, 205(4): 938-942. [20] CLARKE D R, OECHSNER M, PADTURE N P.Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bull, 2012, 37: 891-898. [21] ZHEN Z, WANG X, SHEN Z Y, et al.Thermal cycling behavior of EB-PVD rare earth oxides co-doping ZrO2-based thermal barrier coatings[J]. Ceramics International, 2021, 47(16): 23101-23109. [22] MORA-GARCIA A G, RUIZ-LUNA H, ALVARADO-OROZCO J M, et al. Microstructural analysis after furnace cyclic testing of pre-oxidized ReneN5/(Ni,Pt)Al/7YSZ thermal barrier coatings[J]. Surface & Coatings Technology, 2020, 403: 126376. [23] CAO X Q, VASSEN R, WANG J S, et al.Degradation of zirconia in moisture[J]. Corrosion Science, 2020, 176: 109038. [24] FROMMHERZ M, SCHOLZ A, OECHSNER M, et al.Gadolinium zirconate/YSZ thermal barrier coatings: mixed-mode interfacial fracture toughness and sintering behavior[J]. Surface & Coatings Technology, 2016, 286: 119-128. [25] 王世兴, 李建超, 王秋童, 等. 铂改性铝化物涂层的应用与发展[J]. 热喷涂技术, 2020, 12(3): 18-29. [26] GUO L, LI M Z, ZHANG Y, et al.Improved toughness and thermal expansion of non-stoichiometry Gd2-xZr2+xO7+x/2 ceramics for thermal barrier coating application[J]. Journal of Materials Science & Technology, 2016, 32(1): 28-33. [27] 余春堂, 阳颖飞, 鲍泽斌, 等. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403. |
[1] | 黄光宏, 甄真, 王鑫, 牟仁德, 何利民, 许振华. 多元稀土掺杂YSZ热障涂层的热物理和热循环性能研究*[J]. 真空, 2024, 61(2): 1-9. |
[2] | 张彬, 蔡妍, 张涛, 常振东, 曾令玉, 牟仁德. 沉积入射角度对热障涂层形貌和性能的影响*[J]. 真空, 2023, 60(3): 5-11. |
[3] | 邓仲华, 常振东, 徐雷, 胡江玮, 蔡妍, 牟仁德. 物理气相沉积热障涂层批量生产用球坑仪快速测厚法研究*[J]. 真空, 2022, 59(6): 73-77. |
[4] | 王立哲, 蔡妍, 张儒静, 何利民, 牟仁德. 单晶高温合金CVD铝化物涂层对热障涂层高温防护性能的影响*[J]. 真空, 2022, 59(4): 56-63. |
[5] | 杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳. 微米级裂纹对水冷无氧铜坩埚的影响*[J]. 真空, 2021, 58(4): 81-86. |
[6] | 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20. |
[7] | 戴建伟, 牟仁德, 何利民, 杨文慧, 刘德林, 许振华. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29. |
[8] | 李国浩, 巴德纯, 王栋, 陈红斌, 张洪琦, 杜广煜. EB-PVD制备YSZ涂层的热震性研究*[J]. 真空, 2020, 57(3): 1-4. |
[9] | 翟睿琼, 任国华, 田东波, 李 宇, 杨艳斌, 刘 宠. 低轨道紫外、带电粒子、热循环与原子氧协合效应研究进展[J]. 真空, 2019, 56(1): 72-76. |
[10] | 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46-50. |
|