欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (4): 44-48.doi: 10.13385/j.cnki.vacuum.2025.04.08

• 真空冶金与热工 • 上一篇    下一篇

控制镧热还原制备镱原子蒸气密度的工艺研究*

胡林松1, 金策1,2   

  1. 1.核工业理化工程研究院, 天津 300180;
    2.粒子输运与富集技术全国重点实验室, 天津 300180
  • 收稿日期:2025-02-10 出版日期:2025-07-25 发布日期:2025-07-24
  • 作者简介:胡林松(1988-),男,天津人,硕士,助理工程师。
  • 基金资助:
    *粒子输运与富集技术全国重点实验室(GZ-WZJC-2023-01)

Research on Control Process of Ytterbium Atomic Vapor Density Prepared by Lanthanum Thermal Reduction

HU Linsong1, JIN Ce1,2   

  1. 1. Institute of Physical and Chemical Engineering in Nuclear Industry, Tianjin 300180, China;
    2. National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China
  • Received:2025-02-10 Online:2025-07-25 Published:2025-07-24

摘要: 目前,工业上应用镧热还原法制备镱的反应温度一般设置为1 200 ℃左右,该温度下金属镱的收率和纯度很高,但还原反应十分剧烈,而一些特定工业领域对反应产物的原子蒸气密度提出了严格要求。针对该问题,本文以高纯氧化镱和镧屑为原料,对镧热还原制备镱的工艺和还原反应热力学进行分析,研究了还原反应温度和还原剂过量比对金属镱原子蒸气密度的影响规律。结果表明:650 ℃下存在微量还原反应;700~800 ℃镱原子蒸气密度随还原温度升高剧烈增加;高于800 ℃时镱原子蒸气密度均在1012 cm-3以上;850~1 000 ℃下,反应产物镱的纯度不低于99.79%,当还原剂过量比低于100%时,提高反应温度,镱原子蒸气密度仍显著增加。

关键词: 镧热还原, 镱, 真空蒸馏, 稀土, 蒸气密度

Abstract: At present, the temperature for preparing ytterbium by lanthanum thermal reduction method in industry is usually set at 1 200 ℃, the yield and purity of ytterbium are high, but the reaction is intense. In view of the fact that some specific engineering fields have strict requirements for atomic vapour density of the reaction product, this article analyses the process and thermodynamics of lanthanum thermal reduction to prepare ytterbium with high purity ytterbium oxide and lanthanum chips as raw materials. The influence of reduction temperature and reducing agent ratio on atomic vapour density were studied. The results show that there is a slight reaction at 650 ℃. At 700-800 ℃, the atomic vapour density increases dramatically with the temperature. The atomic vapour density is above 1012 cm-3 over 800 ℃. At 850-1 000 ℃, the purity of the reaction product is not less than 99.79%, when the excess ratio of reducing agent is lower than 100 %, the ytterbium atom vapour density still increases significantly with the increase of reaction temperature.

Key words: lanthanum thermal reduction, ytterbium, vacuum distillation, rare earth, vapour density

中图分类号:  O616

[1] 易宪武, 黄春辉, 王慰, 等. 无机化学丛书第七卷: 钪稀土元素[M]. 北京:科学出版社,2018.
[2] PECHARSKY V K, GSCHNEIDNER K A JR, FORT D. Superheating and other unusual observations regarding the first order phase transition in Dy[J]. Scripta Materrialia, 1996,35(7):843-848.
[3] TOMASZEWSKA-ROLLA D, LINDBERG R, PASISKEVICIUS V, et al.A comparative study of an Yb-doped fiber gain-managed nonlinear amplifier seeded by femtosecond fiber lasers[J]. Scientific Reports, 2022, 12(1): 404.
[4] 赵艳新. 高功率掺镱光纤激光器的非线性效应与研究进展[J]. 光学技术,2024,50(1):40-47.
[5] OULMAATI L, BELMOKHTAR S, BOUZIANE K, et al.Comparison of energy transfer between terbium and ytterbium ions in glass and glass ceramic: application in photovoltaic[J]. Solar Energy Advances, 2022, 2: 100012.
[6] 耿文范. 神奇的现代新材料[M].北京:兵器工业出版社,1991:158.
[7] LI B, WANG H W,JIE J C, et al.Microstructure evolution and modification mechanism of ytterbium modified Al-7.5%Si-0.45%Mg alloys[J]. Journal of Alloys and Compounds, 2020, 509(7): 3387-3392.
[8] TÁRKÁNYI F, DITROI F, TAKÁCS S, et al. Activation cross-sections of longer lived products of deuteron induced nuclear reactions on ytterbium up to 40 MeV[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 304: 36-48.
[9] 齐启超,金涛韫,彭成权,等.冷镱原子光钟绝对频率测量及相关跃迁研究的进展[J]. 仪器仪表学报, 2024, 45(2):2-16.
[10] ALIEV R A, PRISELKOVA A B, KHANKIN V V, et al.Production of medical radioisotope 167Tm by photonuclear reactions on natural ytterbium[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021, 508: 19-23.
[11] SANKARI M, SURYANARAYANA M V.Theoretical investigations on the laser isotope separation of 175Yb for medical applications[J]. Applied Radiation and Isotopes, 2024, 209: 111328.
[12] HANNACHI E, KHAN F A, SLIMANI Y, et al.In vitro antimicrobial and anticancer peculiarities of ytterbium and cerium Co-doped zinc oxide nanoparticles[J]. Biology, 2022, 11(12): 1836.
[13] TITOVA S A, KRUGLOVA M P, STUPIN V A, et al.Potential applications of rare earth metal nanoparticles in biomedicine[J]. Pharmaceuticals, 2025, 18(2): 154.
[14] XU K, REN X, WU D, et al.Study on key process parameter for separation and preparation of high abundance ytterbium 176 isotopes by electromagnetic method[J]. Atomic Energy Science and Technology, 2023, 57(3): 666-672.
[15] 宁志军. 基于氧化镱缓冲层实现高效反式结构钙钛矿太阳能电池[J]. 科学通报,2024,69(13):1669-1670.
[16] 周菲,兰昊,孙小明,等. 氧化镱掺杂氧化铪陶瓷的高温相稳定性与热膨胀性能[J]. 过程工程学报,2024,24(5):580-588.
[17] 邓汝富, 方诚厚, 吴炳乾,等. 用氧化镱富集物制取金属镱的工艺研究[J]. 稀有金属,1996,20(4):269-272.
[18] IONOV A M, NIKIFOROVA T V, RYTUS N N.Aspects of the purification of volatile rare earth metals by UHV sublimation: Sm, Eu, Tm, Yb[J]. Vacuum, 1996, 47(6-8): 879-883.
[19] 黄美松, 成维, 杨露辉, 等. 高纯金属镱的制备工艺研究[J]. 矿冶工程, 2013, 33(6): 94-96.
[20] 张先恒,赵二雄,苗旭晨,等. 一次还原蒸馏制备高纯金属镱的工艺[J]. 金属功能材料,2020,27(6):28-33.
[21] 丁晓玲, 吴炳乾. 铈热还原铥镱镥富集物制取金属镱的热力学探讨[J]. 南方冶金学院学报,1996 (3):204-209.
[22] 邓汝富,方诚厚,吴炳乾,等. 用氧化镱富集物制取金属镱的工艺研究[J]. 稀有金属,1996, 20(4):269-272.
[23] 夏雯,刘淑凤,张丽民. 真空蒸馏技术在低熔点金属提纯中的应用[J]. 有色金属科学与工程,2013,4(4):36-40.
[24] 丘克强, 段文军, 陈启元. 金属在真空状态下的蒸发速率[J]. 有色金属,2002,54(2):48-52.
[25] 叶大伦, 胡建华. 实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
[26] 吴炳乾, 张耀文. 镧热还原铥镜镥富集物时杂质行为的讨论[J]. 江西有色金属,1997,11(2):34-37.
[27] 韩小亮, 张永健, 廖景文,等. 镧热还原法制备金属镱研究[J]. 福建冶金,2002, 51(1):26-29.
[1] 陈鼎, 马海玲, 李京, 邢旺, 莫凡. 真空蒸馏炉在新能源汽车锂离子电池负极材料中的应用*[J]. 真空, 2025, 62(4): 64-68.
[2] 廖国进, 闫绍峰, 仪登利, 戴晓春. 实验优化设计中频反应溅射Al2O3:Ce薄膜发光性质研究[J]. 真空, 2022, 59(1): 24-28.
[3] 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .