真空 ›› 2025, Vol. 62 ›› Issue (4): 69-74.doi: 10.13385/j.cnki.vacuum.2025.04.13
倪俊1,2, 郭腾1,2, 李灿伦1,2, 侯凯霖3, 李荣义3
NI Jun1,2, GUO Teng1,2, LI Canlun1,2, HOU Kailin3, LI Rongyi3
摘要: 柔性热控薄膜的热辐射性能是影响航天器表面热平衡控制的关键。在真空磁控溅射过程中,由于设备实时工艺波动,薄膜可能会出现多种缺陷。为保证镀膜生产质量与效率,针对传统人工缺陷检测方法依赖经验、效率低、劳动强度大、精度低和实时性差等问题,提出了一种基于高效自适应卷积和通道-空间金字塔池化的镀膜缺陷检测方法,详细介绍了模型各关键模块的优化设计方法。结果表明,该方法可自主学习建模潜在分布的多层表征,通过深层神经网络逐层提取所检测目标的特征;其对8类缺陷的平均识别准确率达到了约93%,识别速度FPS提升至140,可以有效提高产品生产质量,满足批量化、高效率的生产需求。
中图分类号: TB43
[1] ZHENG X P, ZHENG S, KONG Y G, et al.Recent advances in surface defect inspection of industrial products using deep learning techniques[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113: 35-58. [2] WAN X, ZHANG X Y, LIU L L.An improved VGG19 transfer learning strip steel surface defect recognition deep neural network based on few samples and imbalanced datasets[J]. Applied Sciences, 2021, 11(6): 2606. [3] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788. [4] REDMON J, FARHADI A.YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 7263-7271. [5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. arXiv:1804.02767, 2018. [6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[R]. arXiv:2004.10934, 2020. [7] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[R]. arXiv:2209.02976, 2022. [8] WANG C Y, BOCHKOVSKIY A, MARK LIAO H Y. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE, 2023:7464-7475. [9] WANG C Y, YEH I H, MARK LIAO H Y. Yolov9: learning what you want to learn using programmable gradient information[C]// Computer Vision-ECCV 2024. Milan, Italy: Springer International Publishing, 2024. [10] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[R]. arXiv:2405.14458, 2024. [11] KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[R]. arXiv:2410.17725, 2024. [12] LIU W, ANGUELOV D, ERHAN D, et al.Ssd: single shot multibox detector[C]//Computer Vision-ECCV 2016. Amsterdam, The Netherlands: Springer International Publishing, 2016. [13] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 42(2):318-327. [14] GIRSHICK R, DONAHUE J, DARRELL T, et al.Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 38(1):142-158. [15] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 39(6): 1137-1149. [16] HAN K, WANG Y H, TIAN Q, et al.Ghostnet: more features from cheap operations[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 1580-1589. [17] TAN J, YANG Z, REN J, et al.A novel robust low-rank multi-view diversity optimization model with adaptive-weighting based manifold learning[J]. Pattern Recognition, 2022, 122:108298. [18] CHEN H, DU Y, FU Y, et al.DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:1-12. [19] TIAN R, JIA M.DCC-CenterNet: A Rapid Detection Method for Steel Surface Defects[J]. Measurement, 2022, 187:110211. [20] DU Y, CHEN H, FU Y, et al.AFF-Net: A Strip Steel Surface Defect Detection Network via Adaptive Focusing Features[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73:1-14. [21] QIAN X, WANG., YANG S, et al. LFF-YOLO: A YOLO Algorithm with Lightweight Feature Fusion Network for Multi-Scale Defect Detection[J]. IEEE Access, 2022, 10: 130339-130349. [22] HU X, LIN S.DFFNet: A Lightweight Approach for Efficient Feature-Optimized Fusion in Steel Strip Surface Defect Detection[J]. Complex & Intelligent Systems, 2024, 10(5): 6705-6723. [23] HOU Q, ZHOU D, FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:13713-13722. [24] ZHENG Z H, WANG P, LIU W, et al.Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(7):12993-13000. [25] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[R]. arXiv:2205.12740,2022. [26] AMARI S I.Backpropagation and stochastic gradient descent method[J]. Neurocomputing, 1993, 5(4/5):185-196. [27] MISRA D.Mish: a self regularized non-monotonic activation function[R]. arXiv:1908.08681, 2019. |
[1] | 唐政. 阵列蒸发源对平移基板成膜均匀性的研究*[J]. 真空, 2024, 61(6): 21-25. |
[2] | 李翔, 姜小蛟, 战春鸣, 刘昂, 孙宁, 李加平. 基于系统回归模型的真空镀膜设备液冷加热盘设计方法研究*[J]. 真空, 2024, 61(4): 6-11. |
[3] | 李灿伦, 倪俊, 郭腾, 韩玮, 王飞, 祁松松, 李辉, 范孝鹏, 范秋林. 无色聚酰亚胺薄膜二次表面镜的光学特性研究[J]. 真空, 2024, 61(3): 70-73. |
[4] | 孙彬, 刘兴龙, 徐乘远, 王庆, 蔺增. 真空镀膜助力低碳制造与可持续发展*[J]. 真空, 2023, 60(3): 12-17. |
[5] | 邓文宇, 王朋阳, 齐丽君, 段永利, 孙宝玉, 万亿, 张昕洁, 谢元华,杜广煜,刘坤. 钕铁硼永磁材料腐蚀机理及防护研究进展*[J]. 真空, 2020, 57(5): 45-51. |
[6] | 王福贞. “热处理技术”和 “真空镀膜技术”在走向融合[J]. 真空, 2020, 57(5): 1-6. |
[7] | 张粉利, 邓敬莲, 王杰峰, 孟庆远. 钢管镀膜前处理清洗工艺的研究[J]. 真空, 2018, 55(6): 60-63. |
|