欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (2): 29-36.doi: 10.13385/j.cnki.vacuum.2024.02.05

• Thin Film • Previous Articles     Next Articles

Research Progress in Preparation Process and Structure Properties of TiAlN Films

XU Zhao-ying, ZHANG Teng-fei, WANG Jin-biao, CHEN Qiao-wang   

  1. School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
  • Received:2023-04-20 Online:2024-03-25 Published:2024-03-28

Abstract: As the most promising TiN film substitute material, TiAlN film has excellent properties such as high hardness, low friction coefficient, good high temperature stability and corrosion resistance. The TiAlN hard films are widely used in the fields petroleum, tools, molds, electric power and aircraft engines. The current application and research progress of domestic and foreign TiAlN films, the preparation methods, and the effects of process parameters on structure and properties of TiAlN films are summarized. The performance of TiAlN film is comprehensively introduced, the method to optimize the performance of TiAlN film is pointed out, and the research and application direction of TiAlN films are prospected. The TiAlN film will develop towards the multiple composite, multilayer structure, and nano multi-layer structure with the further research and the demand of application.

Key words: TiAlN film, preparation, structure, property

CLC Number:  TG115.58;TB43

[1] MA L W, CAIRNEY J M, HOFFMAN M J, et al.Deformation and fracture of TiN and TiAlN coatings on a steel substrate during nanoindentation[J]. Surface & Coatings Technology, 2006, 200(11): 3518-3526.
[2] JAFARI M, ROGSTRM L, ANDERSSON J M, et al.Thermal degradation of TiN and TiAlN coatings during rapid laser treatment[J]. Surface & Coatings Technology, 2021, 422(5): 127517.
[3] DUDZINSKI D, DEVILLEZ A, MOUFKI A, et al.A review of developments towards dry and high speed machining of Inconel 718 alloy[J]. International Journal of Machine Tools & Manufacture, 2004, 44(4): 439-456.
[4] RODRÍGUEZ-BARACALDO R, BENITO J A, PUCHI-CABRERA E S, et al. High temperature wear resistance of (TiAl)N PVD coating on untreated and gas nitrided AISI H13 steel with different heat treatments[J]. Wear, 2007, 262(3/4): 380-389.
[5] MORENO M, ANDERSSON J M, BOYD R, et al. Crater wear mechanism of TiAlN coatings during high-speed metal turning[J]. Wear, 2021, 484/485(5): 204016.
[6] HEO J Y, CHO S H, JE T J, et al.Effects of honing treatment on AIP-TiN and TiAlN coated end-mill for high speed machining[J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 83-87.
[7] NIYOMSOAN S, GRANT W, OLSON D L, et al.Variation of color in titanium and zirconium nitride decorative thin films[J]. Thin Solid Films, 2002, 415(1/2): 187-194.
[8] KAMIYA S, NAGASAWA H, YAMANOBE K, et al.A comparative study of the mechanical strength of chemical vapor-deposited diamond and physical vapor-deposited hard coatings[J]. Thin Solid Films, 2005, 473(1): 123-131.
[9] KIM G S, LEE S Y, HAHN J H.Properties of Ti AlN coatings synthesized by closed-field unbalanced magnetronsputtering[J]. Surface & Coatings Technology, 2005, 193: 213-218.
[10] SANCHETTE F, CZERWIEC T, BILLARD A, et al.Sputtering of Al-Cr and Al-Ti composite targets in pure Ar and in reactive Ar-N2 plasmas[J]. Surface & Coatings Technology, 1997, 96(2/3): 184-190.
[11] DEVIA D M, RESTREPO-PARRA E, ARANGO P J, et al.TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage[J]. Applied Surface Science, 2011, 257(14): 6181-6185.
[12] KANG M C, PARK I W, KIM K H. Performance evaluation of AIP-TiAlN coated tool for high speed machining [J].Surface & Coatings Technology, 2003, 163/164: 734-738.
[13] ZAUNER L, ERTELTHALER P, WOJCIK T, et al.Reactive HiPIMS deposition of Ti-Al-N:influence of the deposition parameters on the cubic to hexagonal phase transitio[J].Surface &Coatings Technology, 2020, 382: 125007.
[14] ZHENG L Y, ZHAO L X, XIONG W H.Tribological properties of TiAlN-coated cermets[J]. Rare Metals, 2009(1): 57-62.
[15] YANG Q, SEO D Y, ZHAO L R, et al. Erosion resistance performance of magnetron sputtering deposited TiAlN coatings[J]. Surface & Coatings Technology, 2004, 188/189: 168-173.
[16] LI G, ZHANG L, CAI F, et al.Characterization and corrosion behaviors of TiN/TiAlN multilayer coatings by ion source enhanced hybrid arc ion plating[J]. Surface & Coatings Technology, 2019, 366: 355-365.
[17] 李明升, 陈柯伟, 王福会, 等. 空心阴极离子镀TiAlN复合薄膜结构及抗氧化性能的研究[J]. 腐蚀科学与防护技术, 2001, 13(增刊1): 411-414.
[18] DENG Y, CHEN W L, LI B X, et al.Physical vapor deposition technology for coated cutting tools: a review[J]. Ceramics International, 2020, 46(11): 18373-18390.
[19] VON RICHTHOFEN A, CREMER R, WITTHAUT M, et al.Composition, binding states, structure, and morphology of the corrosion layer of an oxidized Ti0.46Al0.54N film[J]. Thin Solid Films, 1998, 312(1/2): 190-194.
[20] FOX-RABINOVICH G S, ENDRINO J L, BEAKE B D, et al. Impact of annealing on microstructure, properties and cutting performance of an AlTiN coating[J]. Surface & Coatings Technology, 2006, 201(6): 3524-3529.
[21] JEONG J J, HWANG S K, LEE C M. Nitrogen flow rate dependence of the growth morphology of TiAlN films deposited by reactive sputtering[J]. Surface & Coatings Technology, 2002, 151/152: 82-85.
[22] CHAKRABARTI K, JEONG J J, HWANG S K, et al.Effects of nitrogen flow rates on the growth morphology of TiAlN films prepared by an rf-reactive sputtering technique[J]. Thin Solid Films, 2002, 406(1/2): 159-163.
[23] SCHAFFER E, KLEER G.Mechanical behavior of TiAlN coatings exposed to elevated temperatures and an oxidative environment[J]. Surface & Coatings Technology, 2006(133): 215-219.
[24] ZHAO W J, MEI F H, DONG Y S, et al.AlxTi1-xN hard coatings synthesized by reactive sputtering using mosaic target[J]. Journal of Materials Processing Technology, 2006, 176(1-3): 179-182.
[25] 孙智慧, 钱锋, 肖玮, 等. 占空比对磁控溅射TiAlN薄膜性能影响的实验研究[J]. 真空, 2014, 51(6): 25-27.
[26] MAN B Y, GUZMAN L, MIOTELLO A, et al. Microstructure, oxidation and H2-permeation resistance of TiAlN films deposited by DC magnetron sputtering technique[J]. Surface & Coatings Technology, 2004, 180/181: 9-14.
[27] KOLLER C M, HOLLERWEGER R, SABITZER C, et al.Thermal stabitity and oxidation resistance of are evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings[J]. Surface & Coatings Technology, 2014, 259: 599-607.
[28] MA H, MIAO Q, ZHANG G, et al.The influence of multilayer structure on mechanical behavior of TiN/TiAlSiN multilayer coating[J]. Ceramics International, 2021, 47: 12583-12591.
[29] MEJÍA H D V, ECHAVARRÍA A M, CALDERÓN J A, et al. Microstructural and electrochemical properties of TiAlN(Ag,Cu) nanocomposite coatings for medical applications deposited by dc magnetron sputtering[J]. Journal of Alloys and Compounds, 2020, 828: 154396.
[30] JUNG D H, MOON K I, SHIN S Y, et al.Influence of ternary elements (X=Si, B, Cr) on TiAlN coating deposited by magnetron sputtering process with single alloying targets[J]. Thin Solid Films, 2013, 546: 242-245.
[31] LIU J, ZHU S S, DENG X, et al.Cutting performance and wear behavior of AlTiN-and TiAlSiN-coated carbide tools during dry milling of Ti-6Al-4V[J]. Acta Metallurgica Sinica, 2020, 33: 459-470.
[32] XIAN G, ZHAO H B, FAN H Y, et al.Structure and mechanical properties of Zr/TiAlN films prepared by plasma-enhanced magnetron sputtering[J]. Rare Metals, 2015, 34: 717-724.
[33] LIANG C L, CHENG G A, ZHENG R T, et al.Fabrication and performance of TiN/TiAlN nanometer modulated coatings[J].Thin Solid Films, 2011, 520(2): 813-817.
[34] CANTO C E, ANDRADE E, LUCIO O D, et al.IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering[J]. Nuclear Instruments and Methods in Physics Research B, 2015, 371: 258-262.
[35] LIU D G, RUAN C F, ZHANG P, et al. Structural, interface texture and toughness of TiAlN/CNx multilayer films[J]. Materials Characterization, 2021, 178: 111301.
[36] CHEN L, MOSER M.Composition and structure evolution of sputtered Ti-Al-N[J]. Thin Solid Films, 2009, 517:6635-6641.
[37] SANTANA A E, KARIMI A, DERFLINGER V H, et al. The role of hcp-AlN on hardness behavior of Ti1-xAlxN nanocomposite during annealing[J]. Thin Solid Films, 2004, 469/470: 339-344.
[38] CHEN L, PEI Z L, XIAO J Q, et al.TiAlN/Cu nanocomposite coatings deposited by filtered cathodic arc ion plating[J]. Journal of Materials Science & Technology, 2017, 33(1): 111-116.
[39] CHEN W, HUANG J M, PENG J.Characterisation of TiAlN PVD coatings on AZ31 magnesium alloy[J]. Research on Chemical Intermediates, 2015, 41(3): 1257-1266.
[40] PANCKOW A N, STEFFENHAGEN J, LIERATH F. Advanced coating architectures deposited by pulsed and filtered arc ion-plating[J]. Surface & Coatings Technology, 2003, 163/164: 128-134.
[41] WANG W C, ZHANG L, KONG D J.AFM analysis of TiN, TiAlN, and TiAlSiN coatings prepared by cathodic arc ion plating[J]. Journal of Wuhan University of Technology: Materials Science, 2016, 30(5): 1093-1098.
[42] HEO J Y, CHO S H, JE T J, et al.Effects of honing treatment on AIP-TiN and TiAlN coated end-mill for high speed machining[J]. Transactions of Nonferrous Metals Society of China, 2011(21): 83-87.
[43] YOON S Y, LEE K O, KANG S S, et al. Comparison for mechanical properties between TiNand (Ti,Al)N coating layers by AIP technique[J]. Materials Processing Technology, 2002, 130/131: 261-265.
[44] GWANG S K, LEE S Y, HAHN J H.Properties of TiAIN coatings synthesized by closed field unbalanced magnetron sputtering[J]. Surface & Coatings Technology, 2005, 193(1-3): 213-218.
[45] WANG S Q, CHEN K H, CHEN L, et al.Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings[J]. Journal of Central South University, 2011, 18(2): 310-313.
[46] YANG G Y, PENG H, GUO H B, et al.Deposition of TiN/TiAlN multilayers by plasma-activated EB-PVD: tailored microstructure by jumping beam technology[J].Rare Metals, 2017, 36(8): 651-658.
[47] BROGREN M, HARDING G L, KARMHAG R, et al.Titanium-aluminum-nitride coatings for satellite temperature control[J]. Thin Solid Films, 2000, 370(1/2): 370-376.
[48] ICHIMURA H, KAWANA A.High-temperature oxidation of ion-plated TiN and TiAlN films[J]. Journal of Materials Research, 1993, 5: 1093-1100.
[49] 刘安强, 袁建鹏, 谢建刚. 非平衡磁控溅射TiAlN薄膜的抗高温氧化行为研究[J]. 热喷涂技术, 2021, 13(2): 62-68.
[50] ZHOU M, MAKINO Y, NOSE M, et al.Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering[J]. Thin Solid Films, 1999, 339(1/2): 203-208.
[51] QI Z B, SUN P, ZHU F P, et al.Relationship between tribological properties and oxidation behavior of Ti0.34Al0.66N coatings at elevated temperature up to 900 ℃[J]. Surface & Coatings Technology, 2013, 231:267-272.
[52] 毛延发, 兰新哲, 周廉, 等. V元素对TiAlN涂层高温氧化行为的影响[J]. 稀有金属快报, 2008, 27(5): 27-33.
[53] PFEILER M, KUTSCHEJ K, PENOY M, et al.The influence of bias voltage on structure and mechanical/tribological properties of arc evaporated Ti-Al-V-N coatings[J]. Surface & Coatings Technology, 2007, 202(4-7): 1050-1054.
[54] HE N R, LI H X, JI L, et al.High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology[J]. Tribology International, 2016, 98: 133-143.
[55] ZHANG Q, XU Y X, ZHANG T F.Tribological properties, oxidation resistance and turning performance of AlTiN/AlCrSiN multilayer coatings by arc ion plating[J]. Surface & Coatings Technology, 2018, 356: 1-10.
[56] ZHU Y C, FUJITA K, IWAMOTO N, et al. Influence of boron ion implantation on the wear resistance of TiAN coating[J]. Surface & Coatings Technology, 2002, 158/159:664-668.
[57] FAGA M G, GAUTIER G, CARTASEGNA F, et al.AlSiTiN and AlSiCrN multilayer coatings: effects of structure and surface composition on tribological behavior under dry and lubricated conditions[J]. Applied Surface Science, 2016, 365: 218-226.
[58] WEI Y Q, ZONG X Y, WU Z Z, et al.Effects of Modulation ratio on Microstructure and Properties of TiN/TiAlN Multilayer Coatings[J]. Surface & Coatings Technology, 2013, 229: 191-196.
[1] LI Can-min, DONG Zhong-lin, XIA Zheng-wei, ZHANG Xin-feng, WEI Rong-hua. Microstructure and Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2024, 61(2): 10-15.
[2] ZHAO Zhen-yun, CHEN Ding-jun, GUO Yuan-meng, YANG Hao, DONG Shuai, SUN Tie-sheng, HUANG Mei-dong. Hydrophobic Properties of Chromium Nitride Thin Films at Different Temperatures [J]. VACUUM, 2024, 61(1): 27-33.
[3] LI Shu-feng, WANG Li, GAO Dong-wen. Studies on the Microstructure and Optical Properties of Nanocrystalline ZnSe:Cox Thin Film Prepared by Pulsed Laser Deposition [J]. VACUUM, 2024, 61(1): 41-46.
[4] CHE En-lin, WANG Zhen-hong, SU Ning, CHEN Ding, LIU Jun, CHENG Bo-long, DAI Yu-bo. Application of Hydrogenation Dehydrogenation Process in Powder Preparation of Zirconium-2 Alloy [J]. VACUUM, 2024, 61(1): 83-86.
[5] LI Guo-hao, WAN Yi, ZHANG Xin-jie, DU Guang-yu. Research Progress on Corrosion Fatigue Resistance of Diamond-like Carbon Films [J]. VACUUM, 2023, 60(6): 22-31.
[6] XU Hai-long, FU Bao-quan. Research on Vacuum Preparation and Corrosion Resistance of Titanium Alloys with High Mo Content [J]. VACUUM, 2023, 60(6): 53-60.
[7] ZHANG Zhe, LI Jian-chang. Progress on Microarray-structured Flexible Pressure Sensors [J]. VACUUM, 2023, 60(5): 13-16.
[8] LIN Song-sheng, LIU Ruo-yu, TIAN Tian, LÜ Liang, SU Yi-fan, WANG Yun-cheng, SHI Qian, YUN Hai-tao, TANG Peng, ZHENG Cai-feng, YI Chu-shan. Effect of Thickness on Structure and Properties of Cr-CrN-Cr-CrAlN Multilayers [J]. VACUUM, 2023, 60(4): 1-7.
[9] REN Dong-xue, SUN Xiao-jie, CHEN Lan-lan. Preparation and Properties of Functional PET Composite Films [J]. VACUUM, 2023, 60(4): 18-23.
[10] YU Kang-yuan, HE Yu-dan, YANG Bo, LUO Jiang-shan. Effect of Sputtering Voltage on Microstructure and Properties of Cu Foils Deposited by High Power Impulse Magnetron Sputtering [J]. VACUUM, 2023, 60(3): 1-4.
[11] XIANG Yu-chun, ZHU Jian-lei, YUAN Ya. Effect of Oxygen Pressure on the Properties of CuO Films Grown by Pulse Laser Deposition [J]. VACUUM, 2023, 60(3): 42-45.
[12] HE Wen-zhuang, LI Jian-chang. Latest Studies on Toughened Anti-freeze Hydrogel Flexible Strain Sensor [J]. VACUUM, 2023, 60(1): 1-12.
[13] LIU Xing-long, SHEN Pei, WANG Guang-wen, YUE Xiang-ji, LIN Zeng. Influence of Cooling Structure on Vacuum Arc Source Temperature [J]. VACUUM, 2022, 59(6): 29-33.
[14] ZHANG Jian, QI Zhen-hua, LI Jian-hao, NIU Xia-bin, XU Quan-guo, ZONG Shi-qiang. Growth, Characterization of ITO Films Deposited by DC Magnetron Sputtering [J]. VACUUM, 2022, 59(6): 45-50.
[15] ZHAO Qi, MAN Yu-yan, LI Su-ya, LI Song-yuan, LI Lin. Research on Performance Controlling Method of Fluorocarbon Nanostructured Film for Dry Reactors [J]. VACUUM, 2022, 59(6): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .