欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (5): 63-68.doi: 10.13385/j.cnki.vacuum.2022.05.11

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency

WANG Gui-peng1, HUANG Yu-xing1, QU Shao-fen2, GAO Guang-wei2, XIE Yuan-hua1, LIU Kun1, BA De-chun1   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
    2. Shenyang Hengjin Vacuum Technology Co., Ltd., Shenyang 110168, China
  • Received:2021-11-30 Online:2022-09-25 Published:2022-09-28

Abstract: In order to realize the efficient operation of the vacuum heat treatment furnace, this paper takes a certain type of vacuum heat treatment furnace fan as the object, and studies the influence of the inlet and outlet angles of the fan impeller blades on the cooling efficiency. The SST k-ω turbulence model is used to simulate the fan fluid domain. The pressure distribution and velocity vector change in the impeller, the wind speed and wind speed uniformity at the outlet of the fan are analyzed, and the optimized blade entry angle and exit angle parameters are obtained. The impeller before and after optimization are tested to explore the changes of cooling efficiency and energy saving and consumption reduction of vacuum heat treatment furnace. The results show that when the blade inlet angle is 36° and the outlet angle is 54°, the wind speed and wind speed uniformity at the outlet of the fan volute are better, which meet the technological requirements of the vacuum heat treatment furnace. By optimizing the inlet and outlet angles of the fan impeller blades, the performance of the air cooling system of the vacuum heat treatment furnace is significantly improved. The cooling efficiency of the whole machine is increased by 15.6%, and the energy consumption of the whole machine is reduced by 14.3%. For vacuum heat treatment furnaces with a double-side air outlet structure, there will be a local high pressure area in the volute on the side where the outlet is closed, and the impact of the high pressure area on the impeller outlet should be minimized as much as possible.

Key words: vacuum heat treatment furnace, centrifugal fan, blade inlet angle, blade outlet angle, cooling efficiency, numerical simulation

CLC Number: 

  • TG155.16
[1] 李宝民, 王志坚, 徐成海. 真空热处理[M]. 北京: 化学工业出版社, 2020.
[2] 杨建川, 张弘, 王云霞, 等. 真空炉气体冷却过程分析及冷却系统设计[J]. 真空, 1999(6): 39-43.
[3] EDENHOFER B.An overview of advances in atmosphere and vacuum heat treatment[J]. Heat Trratment of Metals, 1999(1): 1-5.
[4] 谢星, 王红彪, 李振林, 等. 带分流叶片离心式风机叶轮优化设计[J]. 流体机械, 2021, 49(10): 21-28.
[5] 齐大伟, 李伟华, 李传旭, 等. 大型风洞用离心真空泵气动设计[J]. 真空, 2021, 58(4): 49-53.
[6] 屈万世. 离心风机设计及数值模拟研究[D]. 北京: 清华大学, 2017.
[7] 刁雷, 李慧林, 赵京, 等. 幅流风机叶轮参数对内流特性的影响研究[J]. 流体机械, 2021, 49(2): 51-56.
[8] 庞佑霞, 唐勇, 梁亮, 等. 贯流风机结构参数优化组合研究[J]. 农业机械学报, 2011, 42(9): 102-107.
[9] GOVARDHAN M, LAKSHMANA SAMPAT D.Computational studies of flow through cross flow fans-effect of blade geometry[J]. Journal of Thermal Science, 2005, 14(3): 220-229.
[10] 徐立章, 于丽娟, 李耀明, 等. 双出风口多风道离心风机内部流场数值模拟[J]. 农业机械学报, 2014, 45(10): 78-86.
[11] 孔令利, 贺瑞军, 张善庆. 真空正压气淬炉气淬冷却测试[J]. 热加工工艺, 2021, 50(2): 117-120.
[12] 胜俣和彦, 中原琢裕. 真空热处理炉的冷却气体风路切换装置: CN100483058 C[P].2009-04-29.
[13] 王加浩, 刘小民, 田晨晔, 等. 多翼离心风机双圆弧叶片的参数优化设计及气动性能分析[J]. 西安交通大学学报, 2022, 56(3): 94-104.
[14] DING H, CHANG T, LIN F.The influence of the blade outlet angle on the flow field and pressure pulsation in a centrifugal fan[J]. Processes, 2020, 8(11): 1422.
[15] 陈卓, 卿德藩, 唐德文. 叶片数和安装角对氦气压缩机性能影响研究[J]. 机械工程师, 2019(12): 26-28.
[16] 秦国良. 多翼离心通风机变安装角性能计算[J]. 风机技术, 1999(1): 21-23.
[17] JU Y P, LIU Y M, JIANG W, et al.Aerodynamic analysis and design optimization of a centrifugal compressor impeller considering realistic manufacturing uncertainties[J]. Aerospace Science and Technology, 2021, 115: 106787.
[18] 续魁昌. 风机手册[M]. 北京: 机械工业出版社, 1999.
[19] ZHANG J H, CHU W, ZHANG H G, et al.Numerical and experimental investigation of the unsteady aerodynamics and aero-acoustics characteristics of a backward curved bade centrifugal fan[J]. Applied Acoustics, 2016, 110: 256-267.
[20] 张波, 赛庆毅, 李斌. 基于MATLAB和Pro/E的离心鼓风机叶轮三维造型[J]. 建模与仿真, 2021, 10(2): 409-423.
[21] 赵伟国, 王桂鹏, 赵国寿, 等. 低比转速离心泵非定常空化流动特性研究[J]. 兰州理工大学学报, 2020, 46(3): 50-56.
[22] TAN L, CAO S L, WANG Y M, et al.Direct and inverse iterative design method for centrifugal pump impellers[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(6): 764-775.
[23] 王维军, 王洋, 刘瑞华, 等. 离心泵空化流动数值计算[J]. 农业机械学报, 2014, 45(3): 37-44.
[24] Liu M.Dynamic characteristics of centrifugal fan impeller based on fluid-solid coupling[J]. Advanced Materials Research, 2012, 580: 437-440.
[25] 王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
[1] FANG Ming-yuan, WU Yue, ZHANG Yang, XU Zhong-xu. Simulation on Thermal Comfort of Astronaut Wearing Space Suit Under the Condition of Cabin Pressure Loss [J]. VACUUM, 2022, 59(4): 80-85.
[2] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[3] WANG Jun-wei, GONG Jie, DING Wen-jing, XU Jing-hao, GU Miao, ZHANG Li-ming. Numerical Simulation and Analysis of Spatial Rapid Decompression Process Based on Dynamic Grid [J]. VACUUM, 2022, 59(2): 32-37.
[4] LI Cheng-ming, SU Ning, LI Lin, YAO Wei-zhen, YANG Shao-yan. Flow Field Analysis and Large-Scale Material Growth in a Vertical Graded Varying Velocity Hydride Vapor Phase Epitaxy(HVPE) Reactor [J]. VACUUM, 2021, 58(2): 1-5.
[5] ZHU Zhi-peng, QIN Bin-wei, ZHANG Ying-li, YUE Xiang-ji, BA De-chun. Experimental Study on Particle Image Velocimetry of Rarefied Gas Flow [J]. VACUUM, 2021, 58(1): 38-44.
[6] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[7] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[8] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo, WANG Fu-yu. Research on the Stress Control Methods of Inconel625Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(3): 73-79.
[9] DENG Wen-yu, DUAN Yong-li, QI Li-jun, SUN Bao-yu. Computational Fluid Dynamics Simulation of Gas Flow in Single-side Dry Scroll Vacuum Pump [J]. VACUUM, 2019, 56(4): 53-58.
[10] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[11] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[12] WANG Xiao-dong, WU Hong-yue, ZHANG Guang-li, LI He, SUN Hao, DONG Jing-liang, TU Ji-yuan. Computational fluid dynamics approach and its applications in vacuum technology [J]. VACUUM, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .