欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (5): 7-13.doi: 10.13385/j.cnki.vacuum.2022.05.02

• Thin Film • Previous Articles     Next Articles

Research Status and Progress of Preparation Methods of Palladium Thin Films

WANG Dong-yuan, ZHOU Tian, CHEN Qiang, LIU Zhong-wei   

  1. Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Received:2021-11-23 Online:2022-09-25 Published:2022-09-28

Abstract: In recent years, palladium thin films have attracted wide attention due to their excellent properties such as low resistivity and high catalytic activity. Palladium and its alloy thin films have gained more and more interest from researchers in the applications of integrated circuit interconnection, hydrogen sensing, hydrogen storage and catalysis. There are many researches of the preparation of palladium metal film, this article focuses on the research development of preparation of palladium membrane using physical vapor deposition, chemical vapor deposition, atomic layer deposition and plasma auxiliary atomic layer deposition technology, and discusses the pros and cons of various preparation methods, sums up the precursor used to do, and prospects the development trend of preparation technology of palladium film.

Key words: palladium metal film, PVD, CVD, ALD

CLC Number: 

  • TB383
[1] XU W, ZHAN Z, DI L, et al.Enhanced activity for CO oxidation over Pd/Al2O3 catalysts prepared by atmospheric-pressure cold plasma[J]. Catalysis Today, 2015, 256: 148-152.
[2] DI L, XU W, ZHAN Z, et al.Synthesis of alumina supported Pd-Cu alloy nanoparticles for CO oxidation via a fast and facile method[J]. RSC Advances, 2015, 5(88): 71854-71858.
[3] LIU Z, HONG L, THAM M P.Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells[J]. Journal of Power Sources, 2006, 161(2): 831-835.
[4] HA S, LARSEN R, MASEL R I.Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. Journal of Power Sources, 2005, 144(1): 28-34.
[5] WILSON O M, KNECHT M R, GARCIA-MARTINEZ J C, et al. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol[J]. Journal of the American Chemical Society, 2006, 128(14): 4510-4511.
[6] KWAK J H, KOVARIK L, SZANYi J.Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts[J]. ACS Catalysis, 2013, 3(9): 2094-2100.
[7] YUI T, KAN A, SAITOH C, et al.Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2594-2600.
[8] KUMAR P, MALHOTRA L.Palladium capped samarium thin films as potential hydrogen sensors[J]. Materials Chemistry & Physics, 2004, 88(1): 106-109.
[9] XU T, ZACH M P, XIAO Z L, et al.Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films[J]. Applied Physics Letters, 2005, 86(20): 1384-1388.
[10] TITTL A, MAI P, TAUBERT R, et al.Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing[J]. Nano Letters, 2011, 11(10): 4366-4369.
[11] KISHORE S J, NELSON J A, ADAIR J H, et al.Hydrogen storage in spherical and platelet palladium nanoparticles[J]. Journal of Alloys and Compounds, 2005, 389(1/2): 234-242.
[12] YAMAUCHI M, KOBAYASHI H, KITAGAWA H.Hydrogen storage mediated by Pd and Pt nanoparticles[J]. Chemphyschem, 2009, 10(15): 2566-2576.
[13] PARAMBHATH V B, NAGAR R, RAMAPRABHU S.Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene[J]. Langmuir, 2012, 28(20): 7826-7833.
[14] 刘伟, 张宝泉, 刘秀凤. 钯复合膜的研究进展[J]. 化学进展, 2006, 18(11): 1468-1481.
[15] XOMERITAKIS G, LIN Y S.Fabrication of thin metallic membranes by MOCVD and sputtering[J]. Journal of Membrane Science, 1997, 133(2): 217-230.
[16] ZHAO H B, XIONG G X, BARON G V.Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering[J]. Catalysis Today, 2000, 56(1): 89-96.
[17] HAMPDEN-SMITH M J, KODAS T T. Chemical vapor deposition of metals: Part 2. Overview of selective CVD of metals[J]. Chemical Vapor Deposition, 2010, 1(2): 39-48.
[18] 黄磊, 何振东, 潘铭, 等. CVD法制备Pd复合膜的结构表征[C]//第二届中国功能材料及其应用学术会议, 1995.
[19] ITOH N, AKIHA T, SATO T.Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity[J]. Catalysis Today, 2005, 104(2/3/4): 231-237.
[20] XOMERITAKIS G, LIN Y S.Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition[J]. Journal of Membrane Science, 1996, 120(2): 261-272.
[21] BHASKARAN V, MARK J, HAMPDEN-SMITH, et al.Palladium thin films grown by CVD from(1,1,1,5,5,5- hexafluoro-2,4-pentanedionato) palladium(II)[J]. Chemical Vapor Deposition, 1997, 3(5): 85-90.
[22] YU K C, HAMADAN Y, CHENG Y H, et al.Formation of palladium-platinum alloy films on polyimide by catalyst-enhanced chemical vapor deposition[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(5): 789-794.
[23] 郑建华, 冯文芳, 周锦兰, 等. 钯-铂双层覆膜聚酰亚胺的CECVD制备与表征[J]. 稀有金属材料与工程, 2008, 37(5): 918-921.
[24] JUN C S, LEE K H.Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method(cold-wall)[J]. Journal of Membrane Science, 2000, 176(1): 121-130.
[25] ELAM J W, ZINOVEV A, HAN C Y, et al.Atomic layer deposition of palladium films on Al2O3 surfaces[J]. Thin Solid Films, 2006, 515(4): 1664-1673.
[26] TEN EYCK G A, SENKEVICH J J, TANG F, et al. Plasma-assisted atomic layer deposition of palladium[J]. Chemical Vapor Deposition, 2005, 11(1): 60-66.
[27] SENKEVICH J J, TANG F, ROGERS D, et al.Substrate-independent palladium atomic layer deposition[J]. Chemical Vapor Deposition, 2003, 9(5): 258-264.
[28] TEN EYCK G A, PIMANPANG S, JUNEJA J S, et al. Plasma-enhanced atomic layer deposition of palladium on a polymer substrate[J]. Chemical Vapor Deposition, 2007, 13(6/7): 307-311.
[29] WEBER M J, MACKUS A J M, VERHEIJEN M A, et al. Supported core/shell bimetallic nanoparticles synthesis by atomic layer deposition[J]. Chemistry of Materials, 2012, 24(15): 2973-2977.
[30] GOLDSTEIN D N, GEORGE S M.Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac)2 and formalin[J]. Thin Solid Films, 2011, 519(16): 5339-5347.
[31] WEBER M J, MACKUS A J M, VERHEIJEN M A, et al. Atomic layer deposition of high-purity palladium films from Pd(hfac)2 and H2 and O2 plasmas[J]. Journal of Physical Chemistry C, 2014, 118(16): 8702-8711.
[32] LIANG X, LYON L B, JIANG Y B, et al.Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition[J]. Journal of Nanoparticle Research, 2012, 14(6): 1-12.
[33] MACKUS A J M, WEBER M J, THISSEN N F W, et al. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation[J]. Nanotechnology, 2016, 27(3): 034001.
[34] FENG J Y, MINJAUW M M, RAMACHANDRAN R K, et al.The co-reactant role during plasma enhanced atomic layer deposition of palladium[J]. Physical Chemistry Chemical Physics, 2020, 22(16): 9124-9136.
[35] ZOU Y, CHENG C, GUO Y, et al.Atomic layer deposition of rhodium and palladium thin film using low-concentration ozone[J]. RSC Advances, 2021, 11(37): 22773-22779.
[36] GOLDSTEIN D N, GEORGE S M.Enhancing the nucleation of palladium atomic layer deposition on Al2O3 using trimethylaluminum to prevent surface poisoning by reaction products[J]. Applied Physics Letters, 2009, 95(14): 13121.
[37] WEBER M, LAMBOUX C, NAVARRA B, et al.Boron nitride as a novel support for highly stable palladium nanocatalysts by atomic layer deposition[J]. Nanomaterials(Basel), 2018, 8(10): 849-863.
[38] FENG J Y, RAMACHANDRAN R K, SOLANO E, et al.Tuning size and coverage of Pd nanoparticles using atomic layer deposition[J]. Applied Surface Science, 2021, 539(18): 148238.
[39] YAN S, MAEDA H, KUSAKABE K, et al.Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation[J]. Industrial & Engineering Chemistry Research, 1994, 33(3): 616-622.
[40] MOROOKA S, YAN S, YOKOYAMA S, et al.Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall[J]. Separation Science and Technology, 1995, 30(14): 2877-2889.
[41] LU S Y, LIN Y Z.Pd-Ag alloy films prepared by metallorganic chemical vapor deposition process[J]. Thin Solid Films, 2000, 376(1/2): 67-72.
[1] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[2] CHANG Zhen-dong, DENG Zhong-hua, SUN Rong-zhen, MU Ren-de, HU Jiang-wei. Effect of Matrix Surface Microstructure on the Adhesion of PVD Coating [J]. VACUUM, 2022, 59(3): 52-56.
[3] WAN Shu-hong, LIN Jing, FENG Shuai. Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD [J]. VACUUM, 2022, 59(1): 40-47.
[4] DUAN Shan-Shan, SHI Chang-yong, YANG Li-Zhen, LIU Zhong-wei, ZHANG Hai-bao, CHEN Qiang. The Recent Development and Future of Atomic Layer Deposition of Alumina Thin Films [J]. VACUUM, 2021, 58(6): 13-20.
[5] LIU Lu-sheng, ZHAI Zhao-feng, YANG Bing, SONG Hao-zhe, YU Qi, SHI Dan, YUAN Zi-yao, LU Zhi-gang, CHEN Bin, ZHOU Mei-qi, LI Hai-ning, YU Biao, HUANG Nan, JIANG Xin. Development of Hot Filament Chemical Vapor Deposition Equipment for Continuous Diamond Film Preparation [J]. VACUUM, 2020, 57(6): 1-4.
[6] LI Guo-hao, BA De-chun, WANG Dong, CHEN Hong-bin, ZHANG Hong-qi, DU Guang-yu. Research on Thermal Shock Performance of YSZ Coatings Deposited by EB-PVD [J]. VACUUM, 2020, 57(3): 1-4.
[7] WANG Xin, XU Zhen-hua, PENG Chao, DAI Jian-wei, HE Li-min, MU Ren-de. High Temperature Protection Properties of Pt Modified Aluminide Coating on the Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 11-16.
[8] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[9] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD [J]. VACUUM, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .