VACUUM ›› 2021, Vol. 58 ›› Issue (6): 13-20.doi: 10.13385/j.cnki.vacuum.2021.06.03
• Thin Film • Previous Articles Next Articles
DUAN Shan-Shan1, SHI Chang-yong2, YANG Li-Zhen1, LIU Zhong-wei1, ZHANG Hai-bao1, CHEN Qiang1
CLC Number:
[1] 赵曼曼, 陈强. 原子层沉积技术发展概况[J]. 北京印刷学院学报, 2016, 24(6): 78-82. [2] MIN K H, CHOI S, JEONG M S, et al.Investigation of interface characteristics of Al2O3/Si under various O2 plasma exposure times during the deposition of Al2O3 by PA-ALD[J]. Current Applied Physics, 2019, 19(2): 155-161. [3] 桑利军, 赵桥桥, 胡朝丽, 等. 等离子体辅助原子层沉积氧化铝薄膜的研究[J]. 高电压技术, 2012, 38(7):1731-1735. [4] 李艳影. 氧化铝薄膜原子层沉积制备及其介电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [5] ALI K, CHOI K H, JO J, et al.High rate roll-to-roll atmospheric atomic layer deposition of Al2O3 thin films towards gas diffusion barriers on polymers[J]. Materials Letters, 2014, 136: 90-94. [6] MIIKKULAINEN V, LESKELÄ M, RITALA M, et al.Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends[J]. Journal of Applied Physics, 2013, 113(2): 021301. [7] 苗虎, 李刘合, 旷小聪. 原子层沉积技术发展概况[J]. 真空, 2018, 55(4): 51-58. [8] PUURUNEN R L.Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process[J]. Journal of Applied Physics, 2005, 97(12): 121301. [9] VANDALON V, KESSELS W M M. What is limiting low-temperature atomic layer deposition of Al2O3? A vibrational sum-frequency generation study[J]. Applied Physics Letters, 2016, 108(1): 011607. [10] NAM T, LEE H, SEO S, et al.Moisture barrier properties of low-temperature atomic layer deposited Al2O3 using various oxidants[J]. Ceramics International, 2019, 45(15): 19105-19112. [11] POTTS S E, KESSELS W M M. Energy-Enhanced Atomic Layer Deposition for More Process and Precursor Versatility[J]. Coordination Chemistry Reviews, 2013, 257(23-24): 3254-3270. [12] LI H L, XIE C Q.Fabrication of Ultra-High Aspect Ratio(>420∶1)Al2O3 Nanotube Arraysby Sidewall Transfer Metal Assistant Chemical Etching[J]. Micromachines, 2020, 11(4): 378. [13] VALLÉE C, BONVALOT M, BELAHCEN S, et al. Plasma deposition-Impact of ions in plasma enhanced chemical vapor deposition,plasma enhanced atomic layer deposition, and applications to area selective deposition[J]. Journal of Vacuum Science & Technology A, 2020, 38(3): 033007. [14] TAKAGI T.Ion-surface interactions during thin film deposition[J]. Journal of Vacuum Science & Technology A, 1984, 2(2): 382-388. [15] YOON K H, KIM H, LEE Y E K, et al. UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers[J]. RSC Advances, 2017, 7(10): 5601-5609. [16] CHALKER P R, MARSHALL P A, DAWSON K, et al.Vacuum ultraviolet photochemical atomic layer deposition of alumina and titania films[J]. ECS Transactions, 2015, 69(7): 139-145. [17] LEE B H, CHO S, HWANG J K, et al.UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature[J]. Thin Solid Films, 2010, 518(22): 6432-6436. [18] GOLDSTEIN D N, MCCORMICK J A, GEORGE S M.Al2O3 Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry[J]. The Journal of Physical Chemistry C, 2008, 112(49): 19530-19539. [19] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94. [20] NAKAGAWA Y, KAWAKITA T, UCHIDA S, et al.Simultaneous measurement of local densities of atomic oxygen and ozone in pure oxygen pulsed barrier discharge under atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2020, 53(13): 135201. [21] LEI W W, LI X C, CHEN Q, et al.Plasma-assisted ALD of an Al2O3 permeation barrier layer on plastic[J]. Plasma Science and Technology, 2012, 14(2): 129-133. [22] WEI H Y, GUO H G, SANG L J, et al.Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science & Technology, 2018, 20(6): 065508. [23] HEIL S B S, VAN HEMMEN J L, VAN DE SANDEN M C M, et al. Reaction mechanisms during plasma-assisted atomic layer deposition of metal oxides: A case study for Al2O3[J]. Journal of Applied Physics, 2008, 103(10): 103302. [24] GEBHARD M, MAI L, BANKO L, et al.PEALD of SiO2 and Al2O3 thin films on polypropylene: Investigations of the film growth at the interface,stress and gas barrier properties of dyads[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7422-7434. [25] LI X, CHEN Q, SANG L, et al.Atomic layer deposition Al2O3 thin films in magnetized radio frequency plasma source[J]. Physics Procedia, 2011, 18: 100-106. [26] SONG H, SEO S, CHANG H.Study on SiN and SiCN film production using PE-ALD process with highdensity multi-ICP source at low temperature[J]. Current Applied Physics, 2018, 18(11): 1436-1440. [27] 裴学凯. 大气压低温等离子体射流源及其关键活性粒子诊断的研究[D]. 武汉: 华中科技大学, 2014. [28] 但威. 基于卷对卷的空间隔离原子层沉积方法及应用[D]. 武汉: 华中科技大学, 2018. [29] GRONER M D, GEORGE S M, MCLEAN R S, et al.Gas diffusion barriers on polymers using Al2O3 atomic layer deposition[J]. Applied Physics Letters, 2006, 88(5): 051907. [30] GEROGY S M.Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131. [31] SU D Y, KUO Y H, TSENG M H, et al.Effects of surface pretreatment and deposition conditions on the gas permeation properties and flexibility of Al2O3 fllms on polymer substrates by atomic layer deposition[J]. Journal of Coatings Technology and Research,2019, 16(6): 1751-1756. [32] 褚波, 何文杰, 高玉乐, 等. 空间隔离原子层沉积系统的研究[J]. 真空科学与技术学报, 2015, 35(7): 892-896. [33] 权微娟, 贺海晏, 单伟, 等. 原子层沉积Al2O3钝化膜在太阳电池上的应用研究[J]. 太阳能, 2017(6): 29-31. [34] REPINS I, CONTRERAS M A, EGAAS B.19.9 percent-efficient ZnO/CdS/CuInGaSe~2 Solar Cell with 81.2 percent Fill Factor[J]. Progress in photovoltaics, 2008, 16(3): 235-239. [35] BAE D, KWON S, Oh J, et al.Investigation of Al2O3 diffusion barrier layer fabricated byatomic layer deposition for flexible Cu(In, Ga)Se2 solar cells[J]. Renewable Energy, 2013, 55: 62-68. [36] PARK H, KIM S C, BAE H C, et al.ALD-Grown Al2O3 as a diffusion barrier for stainless steel substrates for flexible cu(InGa)Se-2 solar cells[J]. Molecular Crystals and Liquid Crystals, 2010, 551(SI): 147-153. [37] HOSSAIN M A, KHOO K T, CUI X, et al.Atomic layer deposition enabling higher efficiency solar cells: A review[J]. Nano Materials Science, 2020, 2(3): 204-226. [38] KIM H, LEE J, SOHN S, et al.Low-temperature process for atomic layer chemical vapor deposition of an Al2O3 passivation layer for organic photovoltaic cells[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(5): 5285-5290. [39] ZHANG J B, HULTQVIST A, ZHANG T, et al.Al2O3 underlayer prepared by atomic layer deposition for efficient perovskite solar cells[J]. Chem Sus Chem, 2017, 10(19): 3810-3817. [40] LV Y F, ZHANG H, LIU R Q, et al.Composite encapsulation enabled superior comprehensive stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27277-27285. [41] RAJBHANDARI P P, DHAKAL T P.Low temperature ALD growth optimization of ZnO, TiO2, and Al2O3 to be used as a buffer layer in perovskite solar cells[J]. Journal of Vacuum Science & Technology A, 2020, 38(3): 032406. [42] KOUSHIK D, VERHEES W J H, KUANG Y H, et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture[J]. Energy & Environmental Science, 2017, 10(1): 91-100. [43] 赵冉. 基于光电子能谱技术的原子层沉积原位机理研究[D]. 北京: 北京大学, 2020. [44] SHANG L W, JI Z Y, CHEN Y P, et al.Low voltage organic devices and circuits with aluminum oxide thin film dielectric layer[J]. Science China-Technological Sciences, 2011, 54(1): 95-98. |
[1] | HE Ping, ZHANG Xu, YANG yang. Study on Magnetron Sputtering Film Process on Inner Wall of Cylinder with Different Matrix Materials [J]. VACUUM, 2021, 58(6): 33-37. |
[2] | ZHU Bei-bei, NI Chang, QIN Lin, CHU Jian-ning, CHEN Xiao, XU Jian-feng. Nano Film Deposition Technology Based on Magnetron Sputtering [J]. VACUUM, 2021, 58(6): 21-26. |
[3] | FU Xue-cheng, MAO Hai-ping, QU Min-ni, WU Li-ying, WANG Ying. Mechanism Analysis and Control of Material Splashing in the Deposition of Gold Film by using Glassy Carbons Crucible [J]. VACUUM, 2021, 58(6): 27-32. |
[4] | YANG Zhao, LUO Jun-yao, LI Bao-chang, LI Shu-hua, TA Shi-wo, FU Zhen-xiao, NING Hong-long. Effect of Metallic Multilayer Films on Gold Wire Bonding Properties [J]. VACUUM, 2021, 58(6): 43-47. |
[5] | ZHANG Yi-chen. No. 21:Vacuum Roll-to-Roll Coating [J]. VACUUM, 2021, 58(6): 86-88. |
[6] | CHEN QIAN, YANG Li-zhen, LIU Zhong-Wei, ZHANG Hai-bao, CHEN Qiang. Present Situation and Development of Nano Films Deposited by Molecular Layer Deposition [J]. VACUUM, 2021, 58(5): 26-31. |
[7] | YOU Jin-shan. SIS Design and Application for Vacuum Coating Equipment [J]. VACUUM, 2021, 58(5): 80-84. |
[8] | WEI Meng-yao, WANG Hui, HAN Wen-fang, WANG Hong-li, SU Yi-fan, TANG Chun-mei, DAI Ming-jiang, SHI Qian. Study on Electrochromic Properties of Tungsten Oxide Films Deposited by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2021, 58(5): 50-56. |
[9] | ZHANG Xiao-xia, DENG Jin-xiang, KONG Le, LI Rui-dong, YANG Zi-shu, ZHANG Jie. Preparation and Study of Si-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(5): 57-61. |
[10] | WU Zhong-ju, BAI Xiao, CHENG Yang-yang, ZHOU She-zhu. Preparation and Characterization of SiC Coating on Isostatic Pressing Formed Graphite Surface [J]. VACUUM, 2021, 58(5): 62-65. |
[11] | FENG Jie, CHENG Rong, ZHAO Yong, WANG Yan-long, WANG Shang-min, ZHANG Hong, JIA Yan-hui. FFT Analysis of Discharge Oscillations of Plasma Contactor [J]. VACUUM, 2021, 58(5): 72-76. |
[12] | . [J]. VACUUM, 2021, 58(5): 110-112. |
[13] | LI Jian-peng, ZHANG Chi, LI Jian-chang. Latest Studies on Fatigue Failure of Flexible Electronic Devices [J]. VACUUM, 2021, 58(5): 11-15. |
[14] | FU Xue-cheng, XU Jin-bin, WU Li-ying, HUANG Sheng-li, WANG Ying. Study on Uniformity of Inclined Magnetron Sputtering with Small Circular Plane Target [J]. VACUUM, 2021, 58(4): 1-5. |
[15] | JI Jian-chao, YAN Yue, HA En-hua. Study Progress of AZO Films by Sol-gel Methods [J]. VACUUM, 2021, 58(4): 30-35. |
|