欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (6): 13-20.doi: 10.13385/j.cnki.vacuum.2021.06.03

• Thin Film • Previous Articles     Next Articles

The Recent Development and Future of Atomic Layer Deposition of Alumina Thin Films

DUAN Shan-Shan1, SHI Chang-yong2, YANG Li-Zhen1, LIU Zhong-wei1, ZHANG Hai-bao1, CHEN Qiang1   

  1. 1. Lab of Plasma Physics & Materials, Beijing Institute of Graphic Communication, Beijing 102600, China;
    2. Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2020-11-10 Online:2021-11-25 Published:2021-11-30

Abstract: Atomic layer deposition(ALD) technology is a thin film growth technology based on self-limiting interfacial reaction. The atomic layer technology can prepare thin films with dense structure, high conformal, low defect density, excellent performance and great uniformity. Alumina is the most common thin film deposited by atomic layer deposition(ALD-Al2O3). Al2O3 film has high transparency, high band gap width, high dielectric constant, and high barrier properties as well as good chemical and thermal stability. As a passivation layer, gas permeation barrier layer and grid dielectric layer, alumina is widely used in solar cell passivation layer, OLED packaging, organic solar cell dielectric layer, printed electronics and microelectronic device encapsulation. This article reviews the principle, online diagnosis and application development status of ALD-Al2O3, including the growth mechanism, monomer selection, deposition method, and in-situ diagnosis of alumina film. The application and the future development trend of ALD-Al2O3 film are predicted.

Key words: ALD, Al2O3 thin film, barrier Layer, passivation layer, dielectric layer

CLC Number: 

  • TB43
[1] 赵曼曼, 陈强. 原子层沉积技术发展概况[J]. 北京印刷学院学报, 2016, 24(6): 78-82.
[2] MIN K H, CHOI S, JEONG M S, et al.Investigation of interface characteristics of Al2O3/Si under various O2 plasma exposure times during the deposition of Al2O3 by PA-ALD[J]. Current Applied Physics, 2019, 19(2): 155-161.
[3] 桑利军, 赵桥桥, 胡朝丽, 等. 等离子体辅助原子层沉积氧化铝薄膜的研究[J]. 高电压技术, 2012, 38(7):1731-1735.
[4] 李艳影. 氧化铝薄膜原子层沉积制备及其介电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[5] ALI K, CHOI K H, JO J, et al.High rate roll-to-roll atmospheric atomic layer deposition of Al2O3 thin films towards gas diffusion barriers on polymers[J]. Materials Letters, 2014, 136: 90-94.
[6] MIIKKULAINEN V, LESKELÄ M, RITALA M, et al.Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends[J]. Journal of Applied Physics, 2013, 113(2): 021301.
[7] 苗虎, 李刘合, 旷小聪. 原子层沉积技术发展概况[J]. 真空, 2018, 55(4): 51-58.
[8] PUURUNEN R L.Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process[J]. Journal of Applied Physics, 2005, 97(12): 121301.
[9] VANDALON V, KESSELS W M M. What is limiting low-temperature atomic layer deposition of Al2O3? A vibrational sum-frequency generation study[J]. Applied Physics Letters, 2016, 108(1): 011607.
[10] NAM T, LEE H, SEO S, et al.Moisture barrier properties of low-temperature atomic layer deposited Al2O3 using various oxidants[J]. Ceramics International, 2019, 45(15): 19105-19112.
[11] POTTS S E, KESSELS W M M. Energy-Enhanced Atomic Layer Deposition for More Process and Precursor Versatility[J]. Coordination Chemistry Reviews, 2013, 257(23-24): 3254-3270.
[12] LI H L, XIE C Q.Fabrication of Ultra-High Aspect Ratio(>420∶1)Al2O3 Nanotube Arraysby Sidewall Transfer Metal Assistant Chemical Etching[J]. Micromachines, 2020, 11(4): 378.
[13] VALLÉE C, BONVALOT M, BELAHCEN S, et al. Plasma deposition-Impact of ions in plasma enhanced chemical vapor deposition,plasma enhanced atomic layer deposition, and applications to area selective deposition[J]. Journal of Vacuum Science & Technology A, 2020, 38(3): 033007.
[14] TAKAGI T.Ion-surface interactions during thin film deposition[J]. Journal of Vacuum Science & Technology A, 1984, 2(2): 382-388.
[15] YOON K H, KIM H, LEE Y E K, et al. UV-enhanced atomic layer deposition of Al2O3 thin films at low temperature for gas-diffusion barriers[J]. RSC Advances, 2017, 7(10): 5601-5609.
[16] CHALKER P R, MARSHALL P A, DAWSON K, et al.Vacuum ultraviolet photochemical atomic layer deposition of alumina and titania films[J]. ECS Transactions, 2015, 69(7): 139-145.
[17] LEE B H, CHO S, HWANG J K, et al.UV-enhanced atomic layer deposition of ZrO2 thin films at room temperature[J]. Thin Solid Films, 2010, 518(22): 6432-6436.
[18] GOLDSTEIN D N, MCCORMICK J A, GEORGE S M.Al2O3 Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry[J]. The Journal of Physical Chemistry C, 2008, 112(49): 19530-19539.
[19] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94.
[20] NAKAGAWA Y, KAWAKITA T, UCHIDA S, et al.Simultaneous measurement of local densities of atomic oxygen and ozone in pure oxygen pulsed barrier discharge under atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2020, 53(13): 135201.
[21] LEI W W, LI X C, CHEN Q, et al.Plasma-assisted ALD of an Al2O3 permeation barrier layer on plastic[J]. Plasma Science and Technology, 2012, 14(2): 129-133.
[22] WEI H Y, GUO H G, SANG L J, et al.Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science & Technology, 2018, 20(6): 065508.
[23] HEIL S B S, VAN HEMMEN J L, VAN DE SANDEN M C M, et al. Reaction mechanisms during plasma-assisted atomic layer deposition of metal oxides: A case study for Al2O3[J]. Journal of Applied Physics, 2008, 103(10): 103302.
[24] GEBHARD M, MAI L, BANKO L, et al.PEALD of SiO2 and Al2O3 thin films on polypropylene: Investigations of the film growth at the interface,stress and gas barrier properties of dyads[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7422-7434.
[25] LI X, CHEN Q, SANG L, et al.Atomic layer deposition Al2O3 thin films in magnetized radio frequency plasma source[J]. Physics Procedia, 2011, 18: 100-106.
[26] SONG H, SEO S, CHANG H.Study on SiN and SiCN film production using PE-ALD process with highdensity multi-ICP source at low temperature[J]. Current Applied Physics, 2018, 18(11): 1436-1440.
[27] 裴学凯. 大气压低温等离子体射流源及其关键活性粒子诊断的研究[D]. 武汉: 华中科技大学, 2014.
[28] 但威. 基于卷对卷的空间隔离原子层沉积方法及应用[D]. 武汉: 华中科技大学, 2018.
[29] GRONER M D, GEORGE S M, MCLEAN R S, et al.Gas diffusion barriers on polymers using Al2O3 atomic layer deposition[J]. Applied Physics Letters, 2006, 88(5): 051907.
[30] GEROGY S M.Atomic layer deposition: an overview[J]. Chemical Reviews, 2010, 110(1): 111-131.
[31] SU D Y, KUO Y H, TSENG M H, et al.Effects of surface pretreatment and deposition conditions on the gas permeation properties and flexibility of Al2O3 fllms on polymer substrates by atomic layer deposition[J]. Journal of Coatings Technology and Research,2019, 16(6): 1751-1756.
[32] 褚波, 何文杰, 高玉乐, 等. 空间隔离原子层沉积系统的研究[J]. 真空科学与技术学报, 2015, 35(7): 892-896.
[33] 权微娟, 贺海晏, 单伟, 等. 原子层沉积Al2O3钝化膜在太阳电池上的应用研究[J]. 太阳能, 2017(6): 29-31.
[34] REPINS I, CONTRERAS M A, EGAAS B.19.9 percent-efficient ZnO/CdS/CuInGaSe~2 Solar Cell with 81.2 percent Fill Factor[J]. Progress in photovoltaics, 2008, 16(3): 235-239.
[35] BAE D, KWON S, Oh J, et al.Investigation of Al2O3 diffusion barrier layer fabricated byatomic layer deposition for flexible Cu(In, Ga)Se2 solar cells[J]. Renewable Energy, 2013, 55: 62-68.
[36] PARK H, KIM S C, BAE H C, et al.ALD-Grown Al2O3 as a diffusion barrier for stainless steel substrates for flexible cu(InGa)Se-2 solar cells[J]. Molecular Crystals and Liquid Crystals, 2010, 551(SI): 147-153.
[37] HOSSAIN M A, KHOO K T, CUI X, et al.Atomic layer deposition enabling higher efficiency solar cells: A review[J]. Nano Materials Science, 2020, 2(3): 204-226.
[38] KIM H, LEE J, SOHN S, et al.Low-temperature process for atomic layer chemical vapor deposition of an Al2O3 passivation layer for organic photovoltaic cells[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(5): 5285-5290.
[39] ZHANG J B, HULTQVIST A, ZHANG T, et al.Al2O3 underlayer prepared by atomic layer deposition for efficient perovskite solar cells[J]. Chem Sus Chem, 2017, 10(19): 3810-3817.
[40] LV Y F, ZHANG H, LIU R Q, et al.Composite encapsulation enabled superior comprehensive stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(24): 27277-27285.
[41] RAJBHANDARI P P, DHAKAL T P.Low temperature ALD growth optimization of ZnO, TiO2, and Al2O3 to be used as a buffer layer in perovskite solar cells[J]. Journal of Vacuum Science & Technology A, 2020, 38(3): 032406.
[42] KOUSHIK D, VERHEES W J H, KUANG Y H, et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture[J]. Energy & Environmental Science, 2017, 10(1): 91-100.
[43] 赵冉. 基于光电子能谱技术的原子层沉积原位机理研究[D]. 北京: 北京大学, 2020.
[44] SHANG L W, JI Z Y, CHEN Y P, et al.Low voltage organic devices and circuits with aluminum oxide thin film dielectric layer[J]. Science China-Technological Sciences, 2011, 54(1): 95-98.
[1] HE Ping, ZHANG Xu, YANG yang. Study on Magnetron Sputtering Film Process on Inner Wall of Cylinder with Different Matrix Materials [J]. VACUUM, 2021, 58(6): 33-37.
[2] ZHU Bei-bei, NI Chang, QIN Lin, CHU Jian-ning, CHEN Xiao, XU Jian-feng. Nano Film Deposition Technology Based on Magnetron Sputtering [J]. VACUUM, 2021, 58(6): 21-26.
[3] FU Xue-cheng, MAO Hai-ping, QU Min-ni, WU Li-ying, WANG Ying. Mechanism Analysis and Control of Material Splashing in the Deposition of Gold Film by using Glassy Carbons Crucible [J]. VACUUM, 2021, 58(6): 27-32.
[4] YANG Zhao, LUO Jun-yao, LI Bao-chang, LI Shu-hua, TA Shi-wo, FU Zhen-xiao, NING Hong-long. Effect of Metallic Multilayer Films on Gold Wire Bonding Properties [J]. VACUUM, 2021, 58(6): 43-47.
[5] ZHANG Yi-chen. No. 21:Vacuum Roll-to-Roll Coating [J]. VACUUM, 2021, 58(6): 86-88.
[6] CHEN QIAN, YANG Li-zhen, LIU Zhong-Wei, ZHANG Hai-bao, CHEN Qiang. Present Situation and Development of Nano Films Deposited by Molecular Layer Deposition [J]. VACUUM, 2021, 58(5): 26-31.
[7] YOU Jin-shan. SIS Design and Application for Vacuum Coating Equipment [J]. VACUUM, 2021, 58(5): 80-84.
[8] WEI Meng-yao, WANG Hui, HAN Wen-fang, WANG Hong-li, SU Yi-fan, TANG Chun-mei, DAI Ming-jiang, SHI Qian. Study on Electrochromic Properties of Tungsten Oxide Films Deposited by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2021, 58(5): 50-56.
[9] ZHANG Xiao-xia, DENG Jin-xiang, KONG Le, LI Rui-dong, YANG Zi-shu, ZHANG Jie. Preparation and Study of Si-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(5): 57-61.
[10] WU Zhong-ju, BAI Xiao, CHENG Yang-yang, ZHOU She-zhu. Preparation and Characterization of SiC Coating on Isostatic Pressing Formed Graphite Surface [J]. VACUUM, 2021, 58(5): 62-65.
[11] FENG Jie, CHENG Rong, ZHAO Yong, WANG Yan-long, WANG Shang-min, ZHANG Hong, JIA Yan-hui. FFT Analysis of Discharge Oscillations of Plasma Contactor [J]. VACUUM, 2021, 58(5): 72-76.
[12] . [J]. VACUUM, 2021, 58(5): 110-112.
[13] LI Jian-peng, ZHANG Chi, LI Jian-chang. Latest Studies on Fatigue Failure of Flexible Electronic Devices [J]. VACUUM, 2021, 58(5): 11-15.
[14] FU Xue-cheng, XU Jin-bin, WU Li-ying, HUANG Sheng-li, WANG Ying. Study on Uniformity of Inclined Magnetron Sputtering with Small Circular Plane Target [J]. VACUUM, 2021, 58(4): 1-5.
[15] JI Jian-chao, YAN Yue, HA En-hua. Study Progress of AZO Films by Sol-gel Methods [J]. VACUUM, 2021, 58(4): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!