欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (1): 26-36.doi: 10.13385/j.cnki.vacuum.2025.01.05

• Thin Film • Previous Articles     Next Articles

Effect of Different Bond Layers on Thermal Shock Behavior of Yb2O3 Modified Gd2Zr2O7 Thermal Barrier Coatings

LI Tingyue, WANG Xin, ZHEN Zhen, LI Na, XU Zhenhua   

  1. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2024-03-20 Online:2025-01-25 Published:2025-02-10

Abstract: The rare earth composite oxide of (Yb0.1Gd0.92Zr2O7 (YbGdZrO) is a new kind of thermal barrier coatings (TBCs) materials suitable for applications above 1 200 ℃. TBCs specimens with different types of bond layers were prepared by depositing YbGdZrO ceramic coatings onto the surface of bonding layers of NiCoCrAlYHf or (Ni,Pt)Al by electron beam physical vapor deposition (EB-PVD) technique. The microstructure, chemical composition, phase structure, residual stress and thermal shock behavior of the coatings were characterized and analyzed. The results show that the surface of NiCoCrAlYHf bond layer is undulating, and the ceramic layer deposited on it has cauliflower-like texture and a high degree of disorder. The surface of the (Ni, Pt) Al bond layer shows a smooth "back ridge" morphology, and the columnar crystals of the deposited ceramic layer are tightly arranged and the flatness tends to be consistent. The contents of Gd and Zr elements in ceramic layer of the two TBCs specimens are close to that of the original ingot, while the Yb element content is greatly affected by the deposition temperature. With the increase of thermal shock times, the micro-cracks on the surface of NiCoCrAlYHf/YbGdZrO coating initiate and propagate, and pitting pits appear. The (Ni,Pt)Al/YbGdZrO coating is still relatively flat, without micro-cracks and sintering densification. Thermally grown oxide (TGO) layer appears in both coatings after 1 000 times of thermal shock. When the thermal shock reaches to 2 500 cycles, the averaged thickness increment of TGO layer growing on top of (Ni,Pt)Al bond coat is only 1.08 μm. The TGO residual stress of NiCoCrAlYHf/YbGdZrO TBCs is smaller than that of (Ni,Pt)Al/YbGdZrO specimen under the same condition. The ceramic layer elements of both TBCs have diffused to the bond coats, and a small amount remains in the TGO layer. Differently, the Al2O3 film formed by (Ni,Pt)Al/YbGdZrO TBCs shows stronger diffusion resistance for Gd element.

Key words: thermal barrier coating, modified Gd2Zr2O7, metallic bond coat, thermal shock, morphology

CLC Number:  TB321

[1] EVANS A G, MUMM D R, HUTCHINSON J W, et al.Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5):505-553.
[2] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9): 18-26.
[3] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1): 1-6.
[4] 常振东, 张婧, 牟仁德, 等. NiCrAlYSi粘结层合金相结构与性能研究[J]. 真空, 2022, 59(4): 41-47.
[5] 赵云松, 张迈, 戴建伟, 等. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 73-79.
[6] KROGSTAD J A, KRAMER S, LIPKIN D M, et al.Phase stability of t'-zirconia-based thermal barrier coatings: mechanistic insights[J]. Journal of the American Ceramic Society, 2011, 94(s1): 168-177.
[7] 杜博宇, 杨加胜, 陶诗倩, 等. 氧化钇部分稳定氧化锆陶瓷涂层的高温耐久性辨析[J]. 航空制造技术,2023, 66(17): 89-95.
[8] 张丹华, 王璐, 郭洪波, 等. 多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J]. 复合材料学报,2011, 28(2): 179-184.
[9] CAO X Q.Application of rare earths in thermal barrier coating materials[J]. Journal of Materials Science & Technology, 2007, 23: 15-35.
[10] CAO X Q.Development on new thermal barrier coating materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1622-1635.
[11] 赵泓旭, 邓春明, 付朗, 等. 用于热障涂层的锆酸钆材料研究进展[J]. 表面技术, 2022, 51(2): 116-128.
[12] 刘燕祎, 徐强, 潘伟, 等. 固相反应Gd2Zr2O7陶瓷的形成机理研究[J]. 稀有金属材料与工程, 2005, 34(增刊1): 584-586.
[13] SUN L L, GUO H B, PENG H, et al.Phase stability and thermal conductivity of ytterbia and yttria co-doped zirconia[J]. Progress in Natural Science: Materials International, 2013, 23(4): 440-445.
[14] ZHANG Y L, GUO L, YANG Y P, et al.Influence of Gd2O3 and Yb2O3 Co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chinese Journal of Aeronautics, 2012, 25(6): 948-953.
[15] 付朗, 毛杰, 邓子谦, 等. PS-PVD制备锆酸钆热障涂层及其性能研究[J]. 表面技术, 2021, 50(10): 293-300.
[16] GUO L, GUO H, PENG H, et al.Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings[J]. Journal of the European Ceramic Society, 2014, 34(5): 1255-1263.
[17] 宋鹏, 陆建生, 黄太红, 等.热障涂层中NiPtAl与MCrAlY粘结层表面氧化铝的生长差异研究[J]. 稀有金属材料与工程, 2014, 43(3): 601-604.
[18] WANG X, ZHEN Z, HUANG G H, et al.Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat[J]. Journal of Alloys and Compounds, 2021, 873: 159720.
[19] 戴建伟, 牟仁德, 何利民, 等. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29.
[20] ZHEN Z, WANG X, SHEN Z Y, et al.Phase stability, thermo-physical property and thermal cycling durability of Yb2O3 doped Gd2Zr2O7 novel thermal barrier coatings[J]. Ceramics International, 2022, 48(2): 2585-2594.
[21] 白明远, 王鑫, 甄真, 等. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究[J]. 真空, 2021, 58(4): 12-20.
[22] 曹学强. 热障涂层材料[M]. 北京: 科学出版社, 2007.
[23] LIU Y Z, ZHEN Z, WANG X, et al.Thermo-physical properties, morphology and thermal shock behavior of EB-PVD thermal barrier coating with DLC YbGdZrO/YSZ system[J]. Materials Today Communications, 2023, 35: 106265.
[24] JUDE S A A, WINOWLIN JAPPES J T, ADAMKHAN M. Thermal barrier coatings for high-temperature application on superalloy substrates: a review[J]. Materials Today Proceedings, 2022, 60: 1670-1675.
[25] BI X F, XU H B, GONG S K.Investigation of the failure mechanism of thermal barrier coatings prepared by electron beam physical vapor deposition[J]. Surface & Coatings Technology, 2000, 130(1): 122-127.
[26] HUANG Y, PENG X, CHEN X Q.The mechanism of θ to α-Al2O3 phase transformation[J]. Journal of Alloys and Compounds, 2021, 863: 158666.
[27] YU C T, LIU H, ULLAH A, et al.High-temperature performance of (Ni,Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100 ℃: effect of excess S impurities[J]. Corrosion Science, 2019, 159:108115.
[28] 郭磊, 高远, 叶福兴, 等. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198.
[29] SADRI E, ASHRAFIZADEH F, ESLAMI A.Thermal shock performance and microstructure of advanced multilayer thermal barrier coatings with Gd2Zr2O7 topcoat[J]. Surface & Coatings Technology, 2022, 448: 128892.
[1] LI Ting-yue, WANG Xin, ZHEN Zhen, LI Na, XU Zhen-hua. Microstructure and Thermal Cycling Properties of Yb2O3 Modified Gd2Zr2O7 Thermal Barrier Coatings [J]. VACUUM, 2024, 61(5): 21-29.
[2] YAN Chao, ZHANG Tao, JIA Zi-zhao, CHENG Cheng, ZHAO Guo-hua. Development of Water-cooled Copper Crucible for Electron Beam Melting [J]. VACUUM, 2024, 61(2): 78-85.
[3] HUANG Guang-hong, ZHEN Zhen, WANG Xin, MU Ren-de, HE Li-min, XU Zhen-hua. Thermophysical and Thermal Cycling Properties of Multi-element Rare Earth Doped YSZ Thermal Barrier Coatings [J]. VACUUM, 2024, 61(2): 1-9.
[4] WU Xiao-hu, HU Shu-jie, SUN En-ze, ZHANG Xin, ZHAO Qi. Performance Regulation Approach of Fluorinated Amorphous Carbon Film for Large-space Building [J]. VACUUM, 2023, 60(6): 42-46.
[5] ZHANG Bin, CAI Yan, ZHANG Tao, CHANG Zhen-dong, ZENG Ling-yu, MU Ren-de. Effect of Incident Angle under Deposition on the Morphology and Properties of Thermal Barrier Coatings [J]. VACUUM, 2023, 60(3): 5-11.
[6] DENG Zhong-hua, CHANG Zhen-dong, XU Lei, HU Jiang-wei, CAI Yan, MU Ren-de. Research of Quick Measurement for PVD TBCs Thickness in Industrial Production Using Ball Crater Tester [J]. VACUUM, 2022, 59(6): 73-77.
[7] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[8] MENG Chao, YUE Shou-jing, XUAN Li-xin, XUE Hong-ming, GAO Zhen, WANG Xin-chao. Influence of Surface Plasma Activation on Cyanate Ester Composites [J]. VACUUM, 2022, 59(2): 6-10.
[9] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[10] WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong. Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating [J]. VACUUM, 2021, 58(1): 63-66.
[11] LI Guo-hao, BA De-chun, WANG Dong, CHEN Hong-bin, ZHANG Hong-qi, DU Guang-yu. Research on Thermal Shock Performance of YSZ Coatings Deposited by EB-PVD [J]. VACUUM, 2020, 57(3): 1-4.
[12] ZHONG Zhao-jin, CAO Xin, GAO Qiang, HAN Na, CUI Jie-dong, SHI Li-fen, YAO Ting-ting, MA Li-yun, PENG Shou. Effect of RF sputtering power on properties of AZO thin films deposited at room temperature [J]. VACUUM, 2019, 56(1): 45-48.
[13] YAO Ting-ting, ZHONG Zhao-jin, LI Gang, TANG Yong-kang, YANG Yong, JIN Ke-wu, SHENG Hong-xue, WANG Tian-qi, PENG Saiao, JIN Liang-mao, SHEN Hong-lie, GAN Zhi-ping, MA Li-yun. Study on fabrication and properties of micro-nano structure AZO films by DC coupled RF sputtering [J]. VACUUM, 2018, 55(6): 64-67.
[14] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD [J]. VACUUM, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .