欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (1): 30-35.doi: 10.13385/j.cnki.vacuum.2023.01.05

• 薄膜 • 上一篇    下一篇

Cu电极保护膜层氧化铝的原子层沉积工艺研究*

乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 程秀兰   

  1. 上海交通大学电子信息与电气工程学院先进电子材料与器件平台,上海 200240
  • 收稿日期:2022-03-23 出版日期:2023-01-25 发布日期:2023-02-07
  • 通讯作者: 瞿敏妮,博士。
  • 作者简介:乌李瑛(1983-),女,上海人,博士,助理研究员。
  • 基金资助:
    *2021年上海交通大学决策咨询重点课题(No.JCZXSJA-04); 2020年上海交通大学决策咨询课题(No.JCZXSJB2020-010)

Study on Atomic Layer Deposition of Al2O3 Protective Film of Cu Electrode

WU Li-ying, QU Min-ni, FU Xue-cheng, TIAN Miao, MA Ling, CHENG Xiu-lan   

  1. Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-03-23 Online:2023-01-25 Published:2023-02-07

摘要: 介绍了硅功率器件Cu电极保护钝化膜层氧化铝的制备方法。采用热法ALD工艺和等离子增强ALD工艺在铜上沉积氧化铝薄膜,研究了不同ALD工艺、氧化剂种类、沉积温度和载气对氧化铝膜层质量及铜抗氧化保护效果的影响。结果表明:氧化剂对原子层沉积氧化铝薄膜的质量和铜电极的保护性能起着决定性作用;以臭氧(O3)作为氧化剂,氧化铝薄膜极易脱落,与铜表面的结合力很差;以氧等离子体(O-)作为氧化剂,铜表面被氧化形成了氧化铜(CuOx)层;而以水蒸气(H2O)作为氧化剂,在低温100℃下,得到的Al2O3薄膜致密,无明显缺陷,且与铜金属层的结合力较优,对铜抗氧化保护效果良好;当沉积温度高于200℃时,原子层沉积氧化铝薄膜的缺陷明显增多;等离子增强ALD工艺中,当载气为Ar时,所得氧化铝膜厚度不均匀,铜电极发生强烈氧化。

关键词: 原子层沉积, 铜电极, 氧化铝, 钝化保护, 氧化剂

Abstract: The preparation method of protective and passive film for Cu electrode of enhanced power device is introduced. Al2O3 films are deposited on copper by thermal ALD and plasma enhanced ALD techniques. The effects of different ALD techniques, oxidant type, deposition temperature and carrier gas on the quality of Al2O3 films and the protection performance for Cu oxidization are studied. The results show that oxidants play an important role in Al2O3 film quality and the protection performance for copper electrode. When ozone(O3) is used as oxidant, Al2O3 film deposited on copper layer is easy to fall off, and the adhesion to copper surface is very poor. Using oxygen plasma (O-) as oxidant, copper surface is oxidized to form CuOx layer. With H2O as oxidant, the Al2O3 film obtained at low temperature of 100℃ is dense without obvious defects, and has excellent bonding force with copper layer. When the deposition temperature is higher than 200℃, the defects of Al2O3 deposited by ALD increase obviously. In plasma enhanced atomic layer deposition, when the carrier gas is Ar, the thickness of Al2O3 film is not uniform, and the copper electrode is strongly oxidized.

Key words: ALD, copper electrode, Al2O3, passivation protection, oxidant

中图分类号: 

  • TB43
[1] SHARMA S K, SPITZ J.Hillock formation hole growth and agglomeration in thin silver films[J]. Thin Solid Films, 1980, 65(3): 339-350.
[2] HERMAN D S, SCHUSTER M A, GERBER R M.Hillock growth on vacuum deposited aluminum films[J]. Journal of Vacuum Science and Technology, 1972, 9(1): 515-519.
[3] KIM W, MOON Y, LEE S, et al.Copper source/drain electrode contact resistance effects in amorphous indium- gallium-zinc-oxide thin film transistors[J]. Physica Status Solidi, 2009, 3(7/8): 239-241.
[4] YIM J, JUNG S, YEON H, et al.Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor[J]. Japanese Journal of Applied Physics, 2011, 51(1R): 11401.
[5] TAI Y, CHIU H, CHOU L.The deterioration of a-IGZO TFTs owing to the copper diffusion after the process of the source/drain metal formation[J]. Journal of The Electrochemical Society, 2012, 159(5): 200-203.
[6] KA J, CHO E N, LEE M, et al.Electrode metal penetration of amorphous indium gallium zinc oxide semiconductor thin film transistors[J]. Current Applied Physics, 2015, 15(6): 675-678.
[7] FISHER I, EIZENBERG M.Copper ion diffusion in porous and nonporous SiO2-based dielectrics using bias thermal stress and thermal stress tests[J]. Thin Solid Films, 2008, 516(12): 4111-4121.
[8] RAGHAVAN G, CHIANG C, ANDERS P B, et al.Diffusion of copper through dielectric films under bias temperature stress[J]. Thin Solid Films, 1995, 262(1/2): 168-176.
[9] ZHU X, JIANG C, YUAN G, et al.High performance a-IGZO TFT backplanes with Cu gate and source/drain electrodes for AMOLED displays[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 1198-1200.
[10] KLEMENS P G, WILLIAMS R K.Thermal conductivity of metals and alloys[J]. International Metals Reviews, 1986, 31(1): 197-215.
[11] HINO A, MAEDA T, MORITA S, et al.Facilitation of the four-mask process by the double-layered Ti/Si barrier metal for oxide semiconductor TFTs[J]. Journal of Information Display, 2012, 13(2): 61-66.
[12] KIM L, KWON O.Effects of stacked Mo-Ti/Cu source and drain electrodes on the performance of amorphous In-Ga-Zn-O thin-film transistors[J]. IEEE Electron Device Letters, 2018, 39(1): 43-46.
[13] KIM D E, CHO S W, KIM S C, et al.Corrosion behavior and metallization of Cu-based electrodes using MoNi alloy and multilayer structure for back-channel-etched oxide thin-film transistor circuit integration[J]. IEEE Transactions on Electron Devices, 2017, 64(2): 447-454.
[14] LEE C K, IN D Y, OH D J, et al.Ca-doped CuO diffusion barrier for high-performance a-IGZO transistors with Cu-based source/drain material[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1383-1390.
[15] LIU X, WANG L L, NING C, et al.Gate bias stress-induced threshold voltage shift effect of a-IGZO TFTs with Cu gate[J]. IEEE Transactions on Electron Devices, 2014, 61(12): 4299-4303.
[16] KIM Y, LEE K, MUN G, et al.Outstanding performance as Cu top gate IGZO TFT with large trans-conductance coefficient by adopting double-layered Al2O3/SiNx gate insulator[J]. Physica Status Solidi, 2017: 1700183.
[17] KWON G, KIM K, CHOI B D, et al.Multifunctional organic-semiconductor interfacial layers for solution-processed oxide-semiconductor thin-film transistor[J]. Advanced Materials, 2017, 29(21): 1607055.
[18] HU S B, FANG Z Q, NING H L, et al.Effect of post treatment for Cu-Cr source/drain electrodes on a-IGZO TFTs[J]. Materials, 2016, 9(8): 623.
[19] 乌李瑛, 柏荣旭, 瞿敏妮, 等. 热ALD和等离子增强ALD沉积HfO2薄膜的比较[J]. 半导体技术, 2019, 44(10): 795-802.
[20] 李爱东. 原子层沉积技术: 原理及其应用[M]. 北京: 科学出版社, 2016.
[21] 潘杰. 大气压Ar、N2和Ar/O2气体脉冲介质阻挡放电等离子体机理及特性的数值研究[D]. 济南: 山东大学, 2016.
[1] 陈兰兰, 孙小杰, 尉琳琳, 任月庆, 任冬雪, 梁文斌. 利用PEALD制备PET基Al2O3阻隔膜及其性能研究*[J]. 真空, 2022, 59(6): 40-44.
[2] 王冬远, 周甜, 陈强, 刘忠伟. 钯金属薄膜制备方法的研究现状与进展*[J]. 真空, 2022, 59(5): 7-13.
[3] 徐新昀, 朱文丽, 谢晋如, 刘强, 李雪峰. 真空卷绕蒸发镀膜机上实现镀透明氧化铝膜的一种方法[J]. 真空, 2022, 59(4): 48-51.
[4] 段珊珊, 施昌勇, 杨丽珍, 刘忠伟, 张海宝, 陈强. 原子层沉积法制备Al2O3薄膜研究近况和发展趋势[J]. 真空, 2021, 58(6): 13-20.
[5] 樊启鹏, 胡玉莲, 刘博文, 田旭, 江德荣, 刘忠伟. 等离子体增强原子层沉积技术制备碳化钴薄膜*[J]. 真空, 2019, 56(5): 56-60.
[6] 张子欣, 刘忠伟, 杨丽珍, 陈强. 等离子体辅助原子层沉积技术包覆硅基氮化物荧光粉的结果性能研究[J]. 真空, 2019, 56(4): 19-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .