欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (5): 7-13.doi: 10.13385/j.cnki.vacuum.2022.05.02

• 薄膜 • 上一篇    下一篇

钯金属薄膜制备方法的研究现状与进展*

王冬远, 周甜, 陈强, 刘忠伟   

  1. 北京印刷学院 等离子体物理与材料研究室,北京 102600
  • 收稿日期:2021-11-23 出版日期:2022-09-25 发布日期:2022-09-28
  • 通讯作者: 刘忠伟,教授。
  • 作者简介:王冬远(1997-),女,河南省商丘市人,硕士生。
  • 基金资助:
    *国家自然科学基金(12075032,11775028,11875090); 北京市教育委员会自然科学基金(KZ2020101522,KM20181001500); BIGC项目(EC202001,EE202001,EA20191)

Research Status and Progress of Preparation Methods of Palladium Thin Films

WANG Dong-yuan, ZHOU Tian, CHEN Qiang, LIU Zhong-wei   

  1. Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600, China
  • Received:2021-11-23 Online:2022-09-25 Published:2022-09-28

摘要: 近年来,钯金属薄膜由于具有电阻率低和催化活性高等优异性能引起人们的广泛关注,钯及其合金薄膜在集成电路互连应用、氢传感、储氢和催化方面获得了越来越多科研工作者的兴趣。目前已有诸多制备钯金属薄膜的研究,本文重点介绍了利用物理气相沉积技术、化学气相沉积技术、原子层沉积技术以及等离子体辅助原子层沉积技术制备钯薄膜的研究现状,讨论了各种制备方法的优缺点,对所使用的前驱体作了总结,并展望了钯薄膜制备技术未来发展趋势。

关键词: Pd金属薄膜, 物理气相沉积, 化学气相沉积, 原子层沉积

Abstract: In recent years, palladium thin films have attracted wide attention due to their excellent properties such as low resistivity and high catalytic activity. Palladium and its alloy thin films have gained more and more interest from researchers in the applications of integrated circuit interconnection, hydrogen sensing, hydrogen storage and catalysis. There are many researches of the preparation of palladium metal film, this article focuses on the research development of preparation of palladium membrane using physical vapor deposition, chemical vapor deposition, atomic layer deposition and plasma auxiliary atomic layer deposition technology, and discusses the pros and cons of various preparation methods, sums up the precursor used to do, and prospects the development trend of preparation technology of palladium film.

Key words: palladium metal film, PVD, CVD, ALD

中图分类号: 

  • TB383
[1] XU W, ZHAN Z, DI L, et al.Enhanced activity for CO oxidation over Pd/Al2O3 catalysts prepared by atmospheric-pressure cold plasma[J]. Catalysis Today, 2015, 256: 148-152.
[2] DI L, XU W, ZHAN Z, et al.Synthesis of alumina supported Pd-Cu alloy nanoparticles for CO oxidation via a fast and facile method[J]. RSC Advances, 2015, 5(88): 71854-71858.
[3] LIU Z, HONG L, THAM M P.Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells[J]. Journal of Power Sources, 2006, 161(2): 831-835.
[4] HA S, LARSEN R, MASEL R I.Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells[J]. Journal of Power Sources, 2005, 144(1): 28-34.
[5] WILSON O M, KNECHT M R, GARCIA-MARTINEZ J C, et al. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol[J]. Journal of the American Chemical Society, 2006, 128(14): 4510-4511.
[6] KWAK J H, KOVARIK L, SZANYi J.Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts[J]. ACS Catalysis, 2013, 3(9): 2094-2100.
[7] YUI T, KAN A, SAITOH C, et al.Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2594-2600.
[8] KUMAR P, MALHOTRA L.Palladium capped samarium thin films as potential hydrogen sensors[J]. Materials Chemistry & Physics, 2004, 88(1): 106-109.
[9] XU T, ZACH M P, XIAO Z L, et al.Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films[J]. Applied Physics Letters, 2005, 86(20): 1384-1388.
[10] TITTL A, MAI P, TAUBERT R, et al.Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing[J]. Nano Letters, 2011, 11(10): 4366-4369.
[11] KISHORE S J, NELSON J A, ADAIR J H, et al.Hydrogen storage in spherical and platelet palladium nanoparticles[J]. Journal of Alloys and Compounds, 2005, 389(1/2): 234-242.
[12] YAMAUCHI M, KOBAYASHI H, KITAGAWA H.Hydrogen storage mediated by Pd and Pt nanoparticles[J]. Chemphyschem, 2009, 10(15): 2566-2576.
[13] PARAMBHATH V B, NAGAR R, RAMAPRABHU S.Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene[J]. Langmuir, 2012, 28(20): 7826-7833.
[14] 刘伟, 张宝泉, 刘秀凤. 钯复合膜的研究进展[J]. 化学进展, 2006, 18(11): 1468-1481.
[15] XOMERITAKIS G, LIN Y S.Fabrication of thin metallic membranes by MOCVD and sputtering[J]. Journal of Membrane Science, 1997, 133(2): 217-230.
[16] ZHAO H B, XIONG G X, BARON G V.Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering[J]. Catalysis Today, 2000, 56(1): 89-96.
[17] HAMPDEN-SMITH M J, KODAS T T. Chemical vapor deposition of metals: Part 2. Overview of selective CVD of metals[J]. Chemical Vapor Deposition, 2010, 1(2): 39-48.
[18] 黄磊, 何振东, 潘铭, 等. CVD法制备Pd复合膜的结构表征[C]//第二届中国功能材料及其应用学术会议, 1995.
[19] ITOH N, AKIHA T, SATO T.Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity[J]. Catalysis Today, 2005, 104(2/3/4): 231-237.
[20] XOMERITAKIS G, LIN Y S.Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition[J]. Journal of Membrane Science, 1996, 120(2): 261-272.
[21] BHASKARAN V, MARK J, HAMPDEN-SMITH, et al.Palladium thin films grown by CVD from(1,1,1,5,5,5- hexafluoro-2,4-pentanedionato) palladium(II)[J]. Chemical Vapor Deposition, 1997, 3(5): 85-90.
[22] YU K C, HAMADAN Y, CHENG Y H, et al.Formation of palladium-platinum alloy films on polyimide by catalyst-enhanced chemical vapor deposition[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(5): 789-794.
[23] 郑建华, 冯文芳, 周锦兰, 等. 钯-铂双层覆膜聚酰亚胺的CECVD制备与表征[J]. 稀有金属材料与工程, 2008, 37(5): 918-921.
[24] JUN C S, LEE K H.Palladium and palladium alloy composite membranes prepared by metal-organic chemical vapor deposition method(cold-wall)[J]. Journal of Membrane Science, 2000, 176(1): 121-130.
[25] ELAM J W, ZINOVEV A, HAN C Y, et al.Atomic layer deposition of palladium films on Al2O3 surfaces[J]. Thin Solid Films, 2006, 515(4): 1664-1673.
[26] TEN EYCK G A, SENKEVICH J J, TANG F, et al. Plasma-assisted atomic layer deposition of palladium[J]. Chemical Vapor Deposition, 2005, 11(1): 60-66.
[27] SENKEVICH J J, TANG F, ROGERS D, et al.Substrate-independent palladium atomic layer deposition[J]. Chemical Vapor Deposition, 2003, 9(5): 258-264.
[28] TEN EYCK G A, PIMANPANG S, JUNEJA J S, et al. Plasma-enhanced atomic layer deposition of palladium on a polymer substrate[J]. Chemical Vapor Deposition, 2007, 13(6/7): 307-311.
[29] WEBER M J, MACKUS A J M, VERHEIJEN M A, et al. Supported core/shell bimetallic nanoparticles synthesis by atomic layer deposition[J]. Chemistry of Materials, 2012, 24(15): 2973-2977.
[30] GOLDSTEIN D N, GEORGE S M.Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac)2 and formalin[J]. Thin Solid Films, 2011, 519(16): 5339-5347.
[31] WEBER M J, MACKUS A J M, VERHEIJEN M A, et al. Atomic layer deposition of high-purity palladium films from Pd(hfac)2 and H2 and O2 plasmas[J]. Journal of Physical Chemistry C, 2014, 118(16): 8702-8711.
[32] LIANG X, LYON L B, JIANG Y B, et al.Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition[J]. Journal of Nanoparticle Research, 2012, 14(6): 1-12.
[33] MACKUS A J M, WEBER M J, THISSEN N F W, et al. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation[J]. Nanotechnology, 2016, 27(3): 034001.
[34] FENG J Y, MINJAUW M M, RAMACHANDRAN R K, et al.The co-reactant role during plasma enhanced atomic layer deposition of palladium[J]. Physical Chemistry Chemical Physics, 2020, 22(16): 9124-9136.
[35] ZOU Y, CHENG C, GUO Y, et al.Atomic layer deposition of rhodium and palladium thin film using low-concentration ozone[J]. RSC Advances, 2021, 11(37): 22773-22779.
[36] GOLDSTEIN D N, GEORGE S M.Enhancing the nucleation of palladium atomic layer deposition on Al2O3 using trimethylaluminum to prevent surface poisoning by reaction products[J]. Applied Physics Letters, 2009, 95(14): 13121.
[37] WEBER M, LAMBOUX C, NAVARRA B, et al.Boron nitride as a novel support for highly stable palladium nanocatalysts by atomic layer deposition[J]. Nanomaterials(Basel), 2018, 8(10): 849-863.
[38] FENG J Y, RAMACHANDRAN R K, SOLANO E, et al.Tuning size and coverage of Pd nanoparticles using atomic layer deposition[J]. Applied Surface Science, 2021, 539(18): 148238.
[39] YAN S, MAEDA H, KUSAKABE K, et al.Thin palladium membrane formed in support pores by metal-organic chemical vapor deposition method and application to hydrogen separation[J]. Industrial & Engineering Chemistry Research, 1994, 33(3): 616-622.
[40] MOROOKA S, YAN S, YOKOYAMA S, et al.Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall[J]. Separation Science and Technology, 1995, 30(14): 2877-2889.
[41] LU S Y, LIN Y Z.Pd-Ag alloy films prepared by metallorganic chemical vapor deposition process[J]. Thin Solid Films, 2000, 376(1/2): 67-72.
[1] 王鑫, 甄真, 牟仁德, 何利民, 许振华. 沉积真空度对铝化物涂层相结构和高温氧化行为的影响*[J]. 真空, 2022, 59(5): 20-27.
[2] 王立哲, 蔡妍, 张儒静, 何利民, 牟仁德. 单晶高温合金CVD铝化物涂层对热障涂层高温防护性能的影响*[J]. 真空, 2022, 59(4): 56-63.
[3] 祝维, 陆群旭, 钱维金, 黄卫军, 董长昆. 新型碳纳米管微焦点电子源研究*[J]. 真空, 2022, 59(1): 48-53.
[4] 段珊珊, 施昌勇, 杨丽珍, 刘忠伟, 张海宝, 陈强. 原子层沉积法制备Al2O3薄膜研究近况和发展趋势[J]. 真空, 2021, 58(6): 13-20.
[5] 杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳. 微米级裂纹对水冷无氧铜坩埚的影响*[J]. 真空, 2021, 58(4): 81-86.
[6] 李国浩, 巴德纯, 王栋, 陈红斌, 张洪琦, 杜广煜. EB-PVD制备YSZ涂层的热震性研究*[J]. 真空, 2020, 57(3): 1-4.
[7] 王鑫, 许振华, 彭超, 戴建伟, 甄真, 何利民, 牟仁德. 单晶高温合金铂改性铝化物涂层的高温防护性能研究*[J]. 真空, 2020, 57(3): 11-16.
[8] 樊启鹏, 胡玉莲, 刘博文, 田旭, 江德荣, 刘忠伟. 等离子体增强原子层沉积技术制备碳化钴薄膜*[J]. 真空, 2019, 56(5): 56-60.
[9] 张子欣, 刘忠伟, 杨丽珍, 陈强. 等离子体辅助原子层沉积技术包覆硅基氮化物荧光粉的结果性能研究[J]. 真空, 2019, 56(4): 19-23.
[10] 李 琳 , 李成明 , 杨功寿 , 胡西多 , 杨少延 , 苏 宁 . 三层热壁金属有机化学气相外延流场计算机模拟[J]. 真空, 2019, 56(1): 34-38.
[11] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .