欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (1): 79-85.doi: 10.13385/j.cnki.vacuum.2022.01.15

• 3D打印技术 • 上一篇    下一篇

电子束增材制造设备及应用进展*

吴凡1,2,3,4, 林博超1,2,3,4, 权银洙1, 陈玮1,2,3,4, 杨洋1,2,3,4   

  1. 1.中国航空制造技术研究院,北京 100024;
    2.高能束流加工技术重点实验室,北京 100024;
    3.高能束流金属增量制造技术与装备北京市重点实验室,北京 100024;
    4.增材制造航空科技重点实验室,北京 100024
  • 收稿日期:2021-04-03 出版日期:2022-01-25 发布日期:2022-01-27
  • 通讯作者: 陈玮,研究员。
  • 作者简介:吴凡(1987-),男,山东省临朐县人,博士,工程师。
  • 基金资助:
    * 国防基础科研计划(JCKY2017205A002)

Review on Equipment and Application of Electron-beam Based Additive Manufacturing

WU Fan1,2,3,4, LIN Bo-chao1,2,3,4, QUAN Yin-zhu, 1, CHEN Wei1,2,3,4, YANG Yang1,2,3,4   

  1. 1. AVIC Manufacturing Technology Institute,Beijing 100024,China;
    2. Key Laboratory on Power Beam Processing,Beijing 100024,China;
    3. Beijing Key Laboratory on Power Beam Metal Additive Manufacturing Technology and Equipment,Beijing 100024,China;
    4. Aviation Key Laboratory of Science and Technology on Additive Manufacturing,Beijing 100024,China
  • Received:2021-04-03 Online:2022-01-25 Published:2022-01-27

摘要: 电子束增材制造是增材制造技术的主要方向之一,它在真空中进行,具有能量利用率高、零件残余应力低等优势,在航空航天、医疗领域获得较为广泛的应用。介绍了两种电子束增材制造方法——电子束选区熔化和电子束熔丝沉积,总结了设备、电子枪、工艺、材料组织调控等方面的研究与应用进展,并对电子束增材制造技术的发展进行了展望。

关键词: 增材制造, 电子束, 电子束选区熔化, 熔丝成形

Abstract: Electron-beam based additive manufacturing(EBAM) technologies operate in vacuum chambers and possess the characteristics such as high energy efficiency and low residual stress, which makes them widely used in fields including aerospace and medical. This paper focused on two EBAM technologies of electron beam melting(EBM) and electron beam solid freeform fabrication(EBF3). The research and application progress of equipment, electron beam gun, processing technology,microstructure control were reviewed. Prospects on development of EBAM technologies were made.

Key words: additive manufacturing, electron beam, electron beam melting, wire deposition

中图分类号: 

  • TG66
[1] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.
[2] CORMIER D, HARRYSSON O, WEST H.Characterization of H13 steel produced via electron beam melting[J]. Rapid Prototyping Journal, 2004, 10(1): 35-41.
[3] SOCHALSKI-KOLBUS L M, PAYZANT E A. CORNWELL P A, et al. Comparison of residual stresses in inconel 718 simple parts made by electron beam melting and direct laser metal sintering[J]. Metallurgical and Materials Transactions A, 2015, 46(3): 1419-1432.
[4] 汤慧萍, 王建, 逯圣路,等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3): 225-235.
[5] ELECTRON BEAM ADDITIVE MANUFACTURING(EBAM ®). Benefits of wire vs powder metal 3D printing[EB/OL].https://www.sciaky.com/additive-manufa cturing/ wire-vs-powder.
[6] DAVÉ V R.Electron beam(EB)-assisted materials fabrication[D]. Boston: Massachusetts Institute of Technology, 1995.
[7] MATZ J E, EAGAR T W.Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical and Materials Transactions A, 2002, 33(8): 2559-2567.
[8] TAMINGER M, ROBERT M, HAFLEY R, et al.Electron beam freeform fabrication for cost effective near-net shape manufacturing[C]//Meeting on Cost Effective Manufacture via Net Shape Processing, Amsterdam: NASA Technical Reports Server, 2006.
[9] HAFLEY R.Electron beam freeform fabrication: A rapid metal deposition process[C]//Proceedings of the 3rd Annual Automotive Composites Conference, Troy: Brooks Kushman, 2003.
[10] WATSON J, HAFLEY R, PETERSEN D.Development of a prototype low-voltage electron beam freeform fabrication system[C]//13th Solid Freeform Fabrication Symposium, Austin: University of Texas at Austin, 2002.
[11] DAVIS D.“Game-changer” to aid in F-35 production[EB/OL].(2012-04-13). https://www.thefabricator.com/thefabricator/blog/machining/game-changer-to-aid-in-f-35-production.
[12] 巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, 433(13): 66-71.
[13] 陈哲源, 锁红波, 李晋炜. 电子束熔丝沉积快速制造成型技术与组织特征[J]. 航天制造技术, 2010(1): 36-39.
[14] SUO H, CHEN Z, LIU J, et al.Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing[J]. Rare Metal Materials and Engineering, 2014, 43(4): 780-785.
[15] KÖRNER C. Additive manufacturing of metallic components by selective electron beam melting-a review[J]. International Materials Reviews, 2016, 61(5): 361-377.
[16] GE. 100000 patients later: The 3D-printed hip is a decade old and going strong[EB/OL].(2018-07-02). https://www.ge.com/additive/stories/100000-patients-later-3d-printed-hip-decade-old-and-going-strong.
[17] GOCKEL J, BEUTH J, TAMINGER K. Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V[J]. Additive Manufacturing, 2014, 1-4: 119-126.
[18] KOVALCHUK D, IVASISHIN O.Additive manufacturing for the aerospace industry[M]. Amsterdam: Elsevier, 2019.
[19] ANTONYSAMY A A, MEYER J, PRANGNELL P B.Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting[J]. Materials Characterization, 2013, 84: 153-168.
[20] KIRKA M M, GREELEY D A, HAWKINS C, et al.Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting[J]. International Journal of Fatigue, 2017, 105: 235-243.
[21] CARROLL B E, PALMER T A, BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320.
[22] SAMES W J, UNOCIC K A, DEHOFF R R, et al.Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting[J]. Journal of Materials Research, 2014, 29(17): 1920-1930.
[23] DEHOFF R R, KIRKA M M, SAMES W J, et al.Site specific control of crystallographic grain orientation through electron beam additive manufacturing[J]. Materials Science and Technology, 2015, 31(8): 931-938.
[24] SCHWERDTFEGER J, KÖRNER C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss[J]. Intermetallics, 2014, 49: 29-35.
[25] JUECHTER V, SCHAROWSKY T, SINGER R F, et al.Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting[J]. Acta Materialia, 2014, 76: 252-258.
[26] NAG S, SAMUEL S, PUTHUCODE A, et al.Characterization of novel borides in Ti-Nb-Zr-Ta+2B metal-matrix composites[J]. Materials Characterization, 2009, 60(2): 106-113.
[27] BOOK T A, SANGID M D.Evaluation of select surface processing techniques for in situ application during the additive manufacturing build process[J]. JOM, 2016, 68(7): 1780-1792.
[28] DONOGHUE J, ANTONYSAMY A A, MARTINA F, et al.The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V[J]. Materials Characterization, 2016, 114: 103-114.
[29] COLEGROVE P A, COULES H E, FAIRMAN J, et al.Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782-1791.
[30] FU Y, ZHANG H, WANG G, et al.Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel[J]. Journal of Materials Processing Technology, 2017, 250: 220-227.
[31] ZHANG H, HUANG C, WANG G, et al.Comparison of energy consumption between hybrid deposition & micro-rolling and conventional approach for wrought parts[J]. Journal of Cleaner Production, 2021, 279: 123307.
[32] GAYTAN S M, MURR L E, MEDINA F, et al.Advanced metal powder based manufacturing of complex components by electron beam melting[J]. Materials Technology, 2009, 24(3): 180-190.
[33] CHAUVET E, KONTIS P, JÄGLE E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia, 2018, 142: 82-94.
[34] PHAN M, FRASER D, CHEN Z W, et al.Solidification and microstructural control in selective electron beam melting of Co-29Cr-10Ni-7W alloy[J]. Materials Science Forum, 2018, 941: 902-907.
[35] TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al.The influence of porosity on fatigue crack initiation in additively manufactured titanium components[J]. Scientific Reports, 2017, 7(1): 7308.
[36] MASUO H, TANAKA Y, MOROKOSHI S, et al.Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J]. International Journal of Fatigue, 2018, 117: 163-179.
[37] SIMPKINS R J, ROURKE M P, BIELER T R, et al.The effects of HIP pore closure and age hardening on primary creep and tensile property variations in a TiAl XDTM alloy with 0.1wt.% carbon[J]. Materials Science and Engineering: A, 2007, 463(1-2): 208-215.
[38] PARAB N D, ZHAO C, CUNNINGHAM R, et al.Ultrafast X-ray imaging of laser-metal additive manufacturing processes[J]. Journal of Synchrotron Radiation, 2018, 25(5): 1467-1477.
[39] LEUNG C L A, MARUSSI S, ATWOOD R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018, 9(1): 1355.
[40] 陈玮, 李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术, 2018, 61(10): 30-37.
[41] SIGL M, LUTZMANN S, ZAEH M.Transient Physical Effects in Electron Beam Sintering[C]//17th Solid Freeform Fabrication Symposium, Austin:University of Texas at Austin, 2006.
[42] 冉江涛, 赵鸿, 高华兵,等. 电子束选区熔化成形技术及应用[J]. 航空制造技术, 2019, 62(Z1): 48-59.
[43] LIN B, CHEN W, YANG Y, et al.Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting[J]. Journal of Alloys and Compounds, 2020, 830: 154684.
[1] 付学成, 毛海平, 瞿敏妮, 乌李瑛, 王英. 玻璃碳坩埚蒸镀金膜时物料飞溅的机理分析与控制[J]. 真空, 2021, 58(6): 27-32.
[2] 成成, 张帆, 李菊, 任琪琛. 真空电子束熔炼用坩埚冷却装置框架的抗震分析[J]. 真空, 2021, 58(6): 67-71.
[3] 张志平, 许忠政, 张黎源, 姜正鹤. 专用电子束熔炼炉真空抽气系统设计[J]. 真空, 2021, 58(5): 42-45.
[4] 马义刚, 李智慧. 超高真空和高真空技术的应用[J]. 真空, 2021, 58(4): 98-102.
[5] 杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳. 微米级裂纹对水冷无氧铜坩埚的影响*[J]. 真空, 2021, 58(4): 81-86.
[6] 许海鹰, 王壮, 桑兴华, 杨波, 彭勇. 丝束同轴冷阴极电子枪的研制*[J]. 真空, 2021, 58(2): 76-81.
[7] 马晶, 李蛟, 龚小涛, 耿佩, 周超. 电子束熔炼工艺对Ta铸锭表面质量的影响[J]. 真空, 2020, 57(6): 45-47.
[8] 李国浩, 巴德纯, 王栋, 陈红斌, 张洪琦, 杜广煜. EB-PVD制备YSZ涂层的热震性研究*[J]. 真空, 2020, 57(3): 1-4.
[9] 赵宇辉, 赵吉宾, 王志国, 王福雨. Inconel 625镍基高温合金激光增材制造内应力控制方式研究*[J]. 真空, 2020, 57(3): 73-79.
[10] 李论, 赵吉宾, 周波, 田同同. 基于角表数据结构的增材制造分层计算方法*[J]. 真空, 2020, 57(3): 84-88.
[11] 赵吉宾, 李论, 周波, 田同同. 增材制造分层轮廓方向平行填充轨迹生成方法*[J]. 真空, 2020, 57(3): 89-93.
[12] 刘殿海, 李论, 周波, 赵吉宾. 基于激光冲击强化改善增材制造零件残余应力的自动化控制方法*[J]. 真空, 2020, 57(2): 83-87.
[13] 赵宇辉, 赵吉宾, 王志国. Inconel 625镍基高温合金激光增材制造翘曲变形行为研究*[J]. 真空, 2020, 57(2): 88-93.
[14] 王志永, 赵宇辉, 赵吉宾, 王志国, 何振丰. 陶瓷增材制造的研究现状与发展趋势*[J]. 真空, 2020, 57(1): 67-75.
[15] 赵宇辉, 姚超, 王志国. 激光增材制造过程熔池温度测试及预测方法的研究*[J]. 真空, 2020, 57(1): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .