欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (1): 10-20.doi: 10.13385/j.cnki.vacuum.2024.01.02

• Thin Film • Previous Articles     Next Articles

Research Progress on Ferroelectric Properties of Hafnium Oxide Doped Thin Films

WU Li-ying, LIU Dan, FU Xue-cheng, CHENG Xiu-lan   

  1. Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-02-17 Online:2024-01-25 Published:2024-01-24

Abstract: Most studies on ferroelectric thin films are focused on perovskite structural materials. However, these traditional ferroelectric materials have a variety of problems, such as poor compatibility with Si, environmental pollution caused by Pb, large physical thickness, low resistance, and small band gap. Different dopants such as Si, Zr, Al, Y, Gd, Sr and La can induce ferroelectric or antiferroelectric properties in HfO2 films, resulting in residual polari stion up to 45 µC·cm-2 and coercivity (1~2 MV·cm-1) approximately one order of magnitude greater than that of conventional ferroelectric films. At the same time, the thickness of HfO2 films can be very thin (below 10 nm) and the band gap is large (~ 5 eV). These advantages over traditional ferroelectric materials can overcome the obstacles of traditional ferroelectric materials including ferroelectric field effect transistors and 3D capacitors in thin film memory applications. In addition, the electrical and thermal coupling of antiferroelectric films holds promise for a variety of applications, such as energy harvesting/storage, solid state cooling, and infrared sensors. HfO2 doped thin films can be deposited by different deposition techniques, such as ALD, sputtering and CSD, and ALD has more obvious advantages in film deposition. In this paper, the recent progress of ferroelectric and antiferroelectric properties in HfO2 doped thin films is reviewed. The effects of different doping elements, film thickness, grain size, electrode, annealing, and stress on the ferroelectric properties of HfO2 thin films are described in detail.

Key words: ALD, HfO2 thin film, doping, ferroelectric, polarization

CLC Number:  TB34

[1] VALASEK J.Piezoelectric and allied phenomena in rochelle salt[C]//Proceedings of the american physical society, 1920: 537.
[2] VALASEK J.Piezo-electric and allied phenomena in rochelle salt[J]. Physical Review, 1921, 17(4): 475-481.
[3] LINES M E, GLASS A.Principles and applications of ferroelectrics and related materials[M]. Oxford, UK: Clarendon Press Oxford University Press, 2001.
[4] SCOTT J F.Ferroelectric memories[M]. Berlin, Germany: Springer-Verlag, 2000.
[5] DUBOURDIEU C, BRULEY J, ARRUDA T M, et al.Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode[J]. Nature Nanotechnology, 2013, 8: 748-754.
[6] TAKAHASHI M, SAKAI S.Self-aligned-gate metal/ferroelectric/insulator/semiconductor field-effect transistors with long memory retention[J]. Japanese Journal of Applied Physics, 2005, 44(24-27): 800-802.
[7] KIM K, SONG Y J.Integration technology for ferroelectric memory devices[J]. Microelec-tronics Reliability, 2003, 43(3): 385-398.
[8] JEONG D S, THOMAS R, KATIYAR R S, et al.Emerging memories: resistive switching mechanisms and current status[J]. Reports on Progress in Physics Physical Society, 2012, 75(7): 076502.
[9] SETTER N, DAMJANOVIC D, ENG L, et al.Ferroelectric thin films: review of materials, properties, and applications[J]. Journal of Applied Physics, 2006, 100: 051606.
[10] BERSCH E, RANGAN S, BARTYNSKI R A, et al.Band offsets of ultrathin high-k oxide films with Si[J]. Physical Review B, 2008, 78(8): 085114.
[11] THIELSCH R, GATTO A, HEBER J, et al.A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition[J]. Thin Solid Films, 2002, 410(1/2): 86-93.
[12] GEORGE V, JAHAGIRDAR S, CHAO T, et al.Penryn: 45-nm next generation Intel® core™ 2 processor[C]//Asian Solid-state Circuits Conference. IEEE, 2007.
[13] OHTAKA O, FUKUI H, KUNISADA T, et al.Phase relations and volume changes of hafnia under high pressure and high temperature[J]. Journal of the American Ceramic Society, 2001, 84(6): 1369-1373.
[14] HOWARD C J, KISI E H, OHTAKA O.Crystal structures of two orthorhombic zirconias[J]. Journal of the American Ceramic Society, 1991, 74(9): 2321-2323.
[15] KISI E H.Influence of hydrostatic pressure on the t→o transformation in Mg-PSZ studied by in situ neutron diffraction[J]. Journal of the American Ceramic Society, 1998, 81(3): 741-745.
[16] ARASHI H.Pressure-induced phase transformation of HfO2[J]. Journal of the American Ce-ramic Society, 1992, 75(4): 844-847.
[17] KISI E H, HOWARD C J. Crystal structures of zirconia phases and their inter-relation[J]. Key Engineering Materials, 1998, 153/154: 1-36.
[18] HUAN T D, SHARMA V, Jr ROSSETTIG A, et al.Pathways towards ferroelectricity in Hafnia[J]. Physical Review B, 2014, 90(6): 064111.
[19] LOWTHER J E, DEWHURST J K, LEGER J M, et al.Relative stability of ZrO2 and HfO2 structural phases[J]. Physical Review B, 1999, 60(21): 14485.
[20] CLIMA S, WOUTERS D J, ADELMANN C, et al.Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2:a first prin-ciples insight[J]. Applied Physics Letters, 2014, 104(9): 092906.
[21] PARK M H, KIM H J, KIM Y J, et al.The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity[J]. Applied Physics Letters, 2014, 104(7): 072901.
[22] BÖSCKE T S, MIILLER J, BRAUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[23] STARSCHICH S, GRIESCHE D, SCHNELLER T, et al.Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes[J]. Applied Physics Letters, 2014, 104(20): 202903.
[24] MUELLER S, MUELLER J, SINGH A, et al.Incipient ferroelectricity in Al-doped HfO2 thin films[J]. Advanced Functional Materials, 22: 2412-2417.
[25] MÜLLER J, BÖSCKE T S, SCHRÖDER U, et al. Ferroelectricity in simple binary ZrO2 and HfO2[J]. Nano Letters, 2012, 12(8): 4318-4323.
[26] MUELLER J, SCHROEDER U, BOESCKE T S, et al.Ferroelectricity in yttrium-doped hafnium oxide[J]. Journal of Applied Physics, 2011, 110(11): 114113.
[27] MUELLER S, ADELMANN C, SINGH A, et al.Ferroelectricity in Gd-doped HfO2 thin films[J]. ECS Journal of Solid State Science & Technology, 2012, 1(6): 123-126.
[28] SCHROEDER U, YURCHUK E, MUELLER J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide[J]. Japanese Journal of Applied Physics, 2014, 53(8S1): 08LE02.
[29] SCHRÖDER U, MÜLLER J, YURCHUK E, et al. Hafnium oxide based CMOS compatible ferroelectric materials[J]. ECS Journal of Solid State Science & Technology. 2013, 2(4): 69-72.
[30] BOEESCKE T S, TEICHERT S, BRAEUHAUS D, et al.Phase transitions in ferroelectric silicon doped hafnium oxide[J]. Applied Physics Letters, 2011, 99(11): 112904.
[31] ZHOU D, MUELLER J, JIN X, et al.Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films[J]. Applied Physics Letters, 2012, 100(8): 082905.
[32] ZHOU D, XU J, LI Q, et al.Wake-up effects in Si-doped hafnium oxide ferroelectric thin films[J]. Applied Physics Letters, 2013, 103(19): 192904.
[33] YURCHUK E, MÜLLER J, KNEBELS, et al.Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films[J]. Thin Solid Films 2013, 533: 88-92.
[34] LOMENZO P D, ZHAO P, TAKMEEL Q, et al. Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes[J]. Journal of Vacuum Science & Technology B, 2014, 32(2): 03D123.
[35] RICHTER C, SCHENK T, SCHROEDER U, et al. Film properties of lowtemperature HfO2 grown with H2O, O3, or remote O2-plasma[J]. Journal of Vacuum Science & Technology A,2014, 32: 01A117.
[36] HOFFMANN M, SCHENK T, KULEMANOVI, et al. Low temperature compatible hafnium oxide based ferroelectrics[J]. Ferroelectrics, 2015, 480(1): 16-23.
[37] SLATER J C.Atomic radii in crystals[J]. Journal of Chemical Physics, 1964, 41(10): 3199-3204.
[38] ZHAO L, NELSON M, ALDRIDGE H, et al.Crystal structure of Si-doped HfO2[J]. Journal of Applied Physics, 2014, 115(3): 034104.
[39] SPEER J A, COOPER B J.Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates[J].American Mineralogist, 1982, 67: 804-808.
[40] MARTIN D, J MÜLLER, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric[J]. Advanced Materials, 2015, 26(48): 8198-8202.
[41] LOMENZO P D, TAKMEEL Q, ZHOU C, et al.The effects of layering in ferroelectric Si-doped HfO2 thin films[J]. Applied Physics Letters, 2014, 105(7): 072906.
[42] MUELLER S, MULLER J, SCHROEDER U, et al.Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications[J]. IEEE Transactions on Device and Materials Re-liability, 2013, 13(1): 93-97.
[43] PARK M H, KIM H J, KIM Y J, et al.Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature[J]. Applied Physics Letters, 2013, 102(24): 242905.
[44] HWANG C S.Atomic layer deposition for semiconductors[M]. New York, USA: Springer, 2014.
[45] MÜLLER J, BÖSCKE T S, BRÄUHAUS D, et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications[J]. Applied Physics Letters, 2012, 99(11): 112901.
[46] PARK M H, KIM H J, KIM Y J, et al.Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes[J]. Applied Physics Letters, 2013, 102(11): 112914.
[47] PARK M H, KIM H J, KIM Y J, et al.Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes[J].Physica Status Solidi (RRL), 2014, 8: 532-535.
[48] PARK M H, KIM H J, KIM Y J, et al.Study on the degradation mechanism of the ferroe-lectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes[J]. Applied Physics Letters, 2014, 105(7): 072902.
[49] PARK M H, KIM H J, KIM Y J, et al.Ferroelectricity and antiferroelectricity of doped thin HfO2-based films[J]. Advanced Materials, 2015, 27: 1811-1831.
[50] PARK M H, KIM H J, KIM Y J, et al.Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films[J]. Nano Energy, 2015, 12: 131-140.
[51] PARK M H, KIM H J, KIM Y J, et al.Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior[J]. Physica Status Solidi (RRL), 2014, 8(10): 857-861.
[52] SHIMIZU T, YOKOUCHI T, SHIRAISHI T, et al. Study on the effect of heat treatment conditions on metalorganic-chemical-vapor-deposited ferroelectric Hf0.5Zr0.5O2 thin film on Ir electrode[J]. Japanese Journal of Applied Physics, 2014, 53(9S): 09PA04.
[53] OLSEN T, SCHROEDER U, MUELLER S, et al.Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties[J]. Applied Physics Letters, 2012, 101(8): 082905.
[54] POLAKOWSKI P, RIEDEL S, WEINREICH W, et al.Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications[C]//IEEE 6th International Memory Workshop. Taipei:IEEE, 2014.
[55] SCHENK T, MUELLER S, SCHROEDER U, et al.Strontium doped hafnium oxide thin films: wide process window for ferroelectric memories[C]//Solid-state Device Research Confer-ence. Bucharest, Romania: IEEE, 2013.
[56] MÜLLER J, BÖSCKE T S, MÜLLER S, et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories[C]//2013 IEEE International Electron Devices Meeting. Washington, DC, USA: IEEE, 2013.
[57] KIM G H, LEE H J, JIANG A Q, et al.An analysis of imprinted hysteresis loops for a ferroelectric Pb(Zr,Ti)O3 thin film capacitor using the switching transient current measurements[J]. Journal of Applied Physics, 2009, 105(4): 044106.
[58] LEE H J, KIM G H, PARK M H, et al.Polarization reversal behavior in the Pt/Pb(Zr,Ti)O3/Pt and Pt/Al2O3/Pb(Zr,Ti)O3/Pt capacitors for different reversal directions[J]. Applied Physics Letters, 2010, 96(21): 212902.
[59] PARK M H, LEE H J, KIM G H, et al.Tristate memory using sferroelec - tric - insulator - semiconductor heterojunctions for 50% increased data storage[J]. Advanced Func-tional Materials, 2011, 21(22): 4305-4313.
[60] JIANG A Q, LEE H J, KIM G H, et al.The inlaid Al2O3 tunnel switch for ultrathin ferro-electric films[J]. Advanced Materials, 2009, 21(28): 2870-2875.
[61] GARVIE R C.The occurrence of metastable tetragonal zirconia as a crystallite size effect[J]. The Journal of Physical Chemistry, 1965, 69(4): 1238-1243.
[62] GARVIE R C.Stabilization of the tetragonal structure in zirconia microcrystals[J]. The Journal of Physical Chemistry, 1978, 82(2), 218-224.
[63] PITCHER M W, USHAKOV S V, NAVROTSKY A, et al.Energy crossovers in nanocrystalline zirconia[J]. Journal of the American Ceramic Society. 2005, 88(1): 160-167.
[64] SHANDALOV M, MCINTYRE P C.Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films[J]. Journal of Applied Physics, 2009, 106(8): 084322.
[65] CHO D Y, JUNG H S, YU I H, et al.Stabilization of tetragonal HfO2 under low active oxygen source environment in atomic layer deposition[J]. Chemistry of Materials, 2012, 24: 3534-3543.
[66] KIM S K, HWANG C S.Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates[J]. Electrochemical and Solid-State Letters, 2008, 11(3):9-11.
[67] MATERLIK R, KÜNNETHC, KERSCH A. The origin of ferroelectricity in HfxZr1-xO2: a computational investiga-tion and a surface energy model[J]. Journal of Applied Physics, 2015, 117(13): 134109.
[68] GRUVERMAN A, KOLOSOV O, HATANO J, et al.Domain structure and polarization re-versal in ferroelectrics studied by atomic force microscopy[J]. Journal of Vacuum Science & Technology B, 1995, 13(3): 1095-1099.
[69] PARK M H, KIM H J, KIM Y J, et al.Thin HfxZr1-xO2films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability[J]. Advanced Energy Materials, 2014, 4(16): 1400610.
[70] YOO I K, DESU S B.Mechanism of fatigue in ferroelectric thin filmsZ[J]. Physica Status Solidi A, 1992, 133(2): 565-573.
[71] NEVITT M V, FANG Y, CHAN S K.Heat capacity of monoclinic zirconia between 2.75 and 350 K[J]. Journal of the American Ceramic Society, 1990, 73(8): 2502-2504.
[72] TOJO T, ATAKE T, MORI T, et al.Heat capacity and thermodynamic function of zirconia and yttria-stabilized zirconia[J]. Journal of Chemical Thermodynamics, 1999, 31(7): 831-845.
[73] JAFFE J E, BACHORZ R A, GUTOWSKI M.Low-temperature polymorphs of ZrO2 and HfO2. A density functional theory study[J]. Physical Review B, 2005, 72(14): 144107.
[74] SIMONCIC P, NAVROSKY A.Energetics of rare-earth-doped hafnia[J]. Journal of Materials Research, 2007, 22: 876-885.
[75] NIX W D, CLEMENS B M.Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films[J]. Journal of Materials Research, 1999, 14(8): 3467-3473.
[1] LI Guo-hao, WAN Yi, ZHANG Xin-jie, DU Guang-yu. Research Progress on Corrosion Fatigue Resistance of Diamond-like Carbon Films [J]. VACUUM, 2023, 60(6): 22-31.
[2] REN Dong-xue, SUN Xiao-jie, CHEN Lan-lan. Preparation and Properties of Functional PET Composite Films [J]. VACUUM, 2023, 60(4): 18-23.
[3] WU Li-ying, QU Min-ni, FU Xue-cheng, TIAN Miao, MA Ling, CHENG Xiu-lan. Study on Atomic Layer Deposition of Al2O3 Protective Film of Cu Electrode [J]. VACUUM, 2023, 60(1): 30-35.
[4] CHEN Lan-lan, SUN Xiao-jie, WEI Lin-lin, REN Yue-qing, REN Dong-xue, LIANG Wen-bin. Properties of PET Based Al2O3Barrier Thin Films Fabricated by Plasma Enhanced Atomic Layer Deposition [J]. VACUUM, 2022, 59(6): 40-44.
[5] WANG Dong-yuan, ZHOU Tian, CHEN Qiang, LIU Zhong-wei. Research Status and Progress of Preparation Methods of Palladium Thin Films [J]. VACUUM, 2022, 59(5): 7-13.
[6] DUAN Shan-Shan, SHI Chang-yong, YANG Li-Zhen, LIU Zhong-wei, ZHANG Hai-bao, CHEN Qiang. The Recent Development and Future of Atomic Layer Deposition of Alumina Thin Films [J]. VACUUM, 2021, 58(6): 13-20.
[7] YANG Zi-shu, DUAN Ping, DENG Jin-xiang, ZHANG Xiao-xia, ZHANG Jie, YANG Qian-qian. Preparation and Study of Mg-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(3): 30-34.
[8] ZHANG Yu-chen, ZHANG Hai-bao, CHEN Qiang. Review on Semi-Conductive ZnO Thin Film Prepared by HiPIMS [J]. VACUUM, 2021, 58(1): 72-77.
[9] DAI Yong-xi, YANG Qian-qian, DENG Jin-xiang, KONG le, LIU Hong-mei, YANG Kai-hua, WANG Ji-you. Preparation and Study of ZTO Thin Film Doped with Different Si Content [J]. VACUUM, 2020, 57(6): 23-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .