欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 29-34.doi: 10.13385/j.cnki.vacuum.2022.03.07

• Thin Film • Previous Articles     Next Articles

Effect of Modulation Structure on Properties of Cr-CrN-Cr-CrAlN Multilayer Films

CHEN Qu-ping1, LIN Song-sheng2, LIU Ling-yun2, GUO Chao-qian2, SHI Qian2, WANG Yun-cheng1, LÜ Liang1, LIU Ruo-yu1, YI Chu-shan1   

  1. 1. Aecc South Industry Company Limited, Zhuzhou, 412000, China;
    2. Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory of Modern Materials Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangzhou 510651, China
  • Received:2021-11-11 Online:2022-05-25 Published:2022-06-01

Abstract: In order to improve the service performance of titanium alloy, multilayer films with different RCr-CrN:RCr-CrAlN modulation ratio were prepared on TC4 titanium alloy by vacuum cathodic arc ion plating. Scanning electron microscope(SEM), X-ray diffraction (XRD), microhardness tester, scratch tester, stress tester and sand erosion tester were used to detect and analyze the cross-section morphology, structure, thickness, hardness, adhesion, residual stress and sand erosion resistance of the multilayer films. The results show that the thickness of multilayer films is 7-8μm, the transition layer is about 1.5 μm, and the thickness of single cycle is 150-200nm. All the multilayer films exhibit (200) preferred growth face centered cubic structure. With the increase of the proportion of Cr-CrAlN layer, the hardness, residual stress and adhesion of the film increase accordingly. The sand erosion resistance of multilayer films with different modulation ratios at 90° angle of attack is more than 3 times that of TC4 substrate before they are completely damaged, and at 30° angle of attack, the sand erosion resistance of multilayer films is about 8 times that of TC4 substrate. When the modulation ratio of RCr-CrN:RCr-CrAlN is 1∶2, the multilayer films have the best comprehensive properties.

Key words: modulation ratio, multilayer film, sand erosion resistance, arc ion plating, titanium alloy

CLC Number: 

  • TG174
[1] 雒建斌. 超滑与摩擦起源的探索[J].科学通报, 2020, 65(27): 2968-2978.
[2] LU B T.Erosion-corrosion in oil and gas production[J]. Research and Reviews in Materials Science and Chemistry, 2013, 2(1): 19-60.
[3] PRAVEENA A S, SARANGANA J, SURESH S, et al.Optimization and erosion wear response of NiCrSiB/WC-Co HVOF coating using Taguchi method[J]. Ceramics International, 2016, 42: 1094-1104.
[4] DALLAIRE S, DUBÉ D, FISET M.Laser melting of plasma-sprayed copper ceramic coatings for improved erosion resistance[J]. Wear, 1999, 231(1): 102-107.
[5] LIN S S, ZHOU K S, DAI M J, et al.Structural, mechanical, and sand erosion properties of TiN/Zr/ZrN multilayer coatings[J]. Vacuum, 2015, 122: 179-186.
[6] GREGORY K. Gas turbine engine erosion & corrosion compressor durability coating: Focused technology transition[EB/OL]. 2014, http://www.ibrd.gov.nl.ca/seuscp/ pdf/presentations/liburdi_ric.pdf.
[7] CAO X, HE W, LIAO B, et al.Sand particle erosion resistance of the multilayer gradient TiN/Ti coatings on Ti6Al4V alloy[J]. Surface & Coatings Technology, 2019, 142(9): 62-67.
[8] MAURER C, SCHULZ U.Erosion resistant titanium based PVD coatings on CFRP[J]. Wear, 2013, 302(1/2): 937-945.
[9] ZHOU F, MA Q, ZHANG M D.Comparison of tribological properties of CrN, CrTiN and CrTiBN coatings sliding against SiC and SUS440C balls in water[J]. Applied Physics A, 2020, 126: 796.
[10] CAI F, HUANG X, YANG Q. Mechanical properties, sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems[J]. Wear, 2015, 324/325: 27-35.
[11] 韦春贝, 唐明, 林松盛, 等. CrAlSiN涂层与不同材料配副时的摩擦学特性[J]. 表面技术, 2018, 47(6): 181-187.
[12] 董卫萍, 柳琪, 王进, 等. 热作模具钢CrTiAlSiN 多元复合涂层的工业制备及性能研究[J]. 模具制造, 2018, 18(1): 86-89.
[13] 杨鸿泰, 代明江, 李洪, 等. Al含量对TiAlN涂层组织结构和性能的影响[J]. 材料导报, 2018, 32(10): 3573-3578.
[14] LIN S S, ZHOU K S, DAI M J, et al.Effects of surface roughness of substrate on properties of Ti/TiN/Zr/ZrN multilayer coatings[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 451-456.
[15] WIECINSKI P, SMOLIK J, GARBACZ H, et al.Erosion resistance of the nanostructured Cr/CrN multilayer coatings on Ti6Al4V alloy[J]. Vacuum, 2014, 107(6): 277-283.
[16] EMGBER M, RUD K, ARDEY S, et al.Advanced technologies for next generation regional jets survey of research activities at MTU aero engines[C]//18th Conference of the International Society for Air Breathing Engines, Beijing: ISABE, 2007: 1-11.
[17] 林松盛, 代明江, 朱霞高, 等. CrTiAlCN多元多层梯度膜的制备及其结构研究[J]. 中国有色金属学报, 2009, 19(2): 259-264.
[18] 赵瑞山, 任鑫, 王亮, 等. 多弧离子镀与磁控溅射共沉积TiN/TiCN 多层膜的高温抗氧化性能[J]. 材料保护, 2017, 50(3): 5-11.
[19] 林松盛, 黄儒明, 苏一凡, 等. CrN膜层结构对其性能的影响[J]. 材料研究与应用, 2019, 13(3): 195-201.
[20] 刘灵云, 林松盛, 王迪, 等. CrAlN 抗冲蚀涂层制备及性能研究[J]. 真空, 2020, 57(2): 40-46.
[1] WEI Yong-qiang. Characteristics of Spatial Transmission Velocity and Energy of Ti Macroparticles in Arc Ion Plating Processing [J]. VACUUM, 2021, 58(6): 48-54.
[2] YANG Zhao, LUO Jun-yao, LI Bao-chang, LI Shu-hua, TA Shi-wo, FU Zhen-xiao, NING Hong-long. Effect of Metallic Multilayer Films on Gold Wire Bonding Properties [J]. VACUUM, 2021, 58(6): 43-47.
[3] WANG Yang, ZHANG Gao-hui, WANG Kai, YANG Rong-fei, LI Xiang, SUN Qi-xuan. Laser Ablative Characterization of Fire Resistance for the Titanium Alloy Ti6Al4V Surface by Ion Implanted Copper [J]. VACUUM, 2021, 58(5): 98-103.
[4] LI Jing, TAN Zhang-hua, LIU Xing-xing, CHEN Ying-lin, LI Hao-wen, YANG Hao, WANG Chang-lin, WANG Jiang-yong, XU Cong-kang. Quantitative Analysis of AES Depth Profiles for Ni/Cr Multilayered Film by Genetic Algorithms [J]. VACUUM, 2021, 58(4): 6-11.
[5] WANG Zi-lu, HAO Meng-yi, LI Zhen-xi, LI Jian-jun, HOU Jing-yue. Risk Identification and Precaution of Vacuum Consumable Melting for Titanium Alloys [J]. VACUUM, 2021, 58(3): 71-76.
[6] WU Yan-chao, LIU Yu-yao, LIU Yang, GAO Sheng-yuan, HUANG Mei-dong. Effects of Modulation Ratio on Mechanical Properties of Cr/TiN Nano-multilayers Prepared by Arc Ion Plating [J]. VACUUM, 2021, 58(2): 10-14.
[7] WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong. Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating [J]. VACUUM, 2021, 58(1): 63-66.
[8] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[9] KONG Yuan, ZHANG Hai-ou, GAO Jian-cheng, CHEN Xi, WANG Gui-lan. Numerical Simulation of Multi-Scale Double Time Steps Multi-Physical Fields During Laser Metal Melting Deposition Process [J]. VACUUM, 2020, 57(4): 77-84.
[10] ZHONG Li, SHEN Li-ru, CHEN Mei-yan, LIU Tong, DAN Min, JIN Fan-ya. Study on Tribological Properties of (Ti, Cr) N Films [J]. VACUUM, 2020, 57(2): 27-32.
[11] LIU Ling-yun, LIN Song-sheng, WANG Di, LI Feng, DAI Ming-jiang, SHI Qian, WEI Chun-bei. Study on Preparation and Properties of CrAlN Anti-erosion Coating [J]. VACUUM, 2020, 57(2): 40-46.
[12] ZHANG Ying-wei, LI Xiao-dan, GAO Zheng-yu, NI Jia-qiang, LIU Yan-mei, LI Jian-zhong. Research of Electrolytic Polishing on Selective Laser Melting TC4 Alloy in Perchloric Acid Media [J]. VACUUM, 2020, 57(2): 78-82.
[13] WANG Di, LIN Song-sheng, LIU Ling-yun, YANG Hong-zhi, JIANG Bai-ling, XUE Yu-na, ZHOU Ke-song. Research Progress of Surface Treatment Technology on Fatigue Properties of Titanium Alloy [J]. VACUUM, 2019, 56(6): 36-42.
[14] SONG Qing-zhu, DONG Hui, E Dong-mei, WANG Ling-ling, ZHANG Ning, QIAO Zhong-lu. Development of Electromagnetic Levitation Vacuum Melting Casting Technology [J]. VACUUM, 2019, 56(6): 43-48.
[15] LI Hao, WANG Dong-wei, ZHANG Chuan, LIU Chan, HUANG Mei-dong. Study on corrosion-resistance of Cr/CrN multilayers by arc ion plating [J]. VACUUM, 2019, 56(3): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .