真空 ›› 2021, Vol. 58 ›› Issue (6): 27-32.doi: 10.13385/j.cnki.vacuum.2021.06.05
付学成, 毛海平, 瞿敏妮, 乌李瑛, 王英
FU Xue-cheng, MAO Hai-ping, QU Min-ni, WU Li-ying, WANG Ying
摘要: 采用玻璃碳坩埚和电子束蒸发设备沉积金膜时,随着黄金物料的消耗,在相同沉积速率下蒸镀所得金膜表面颗粒越来越多,严重影响了薄膜的平整度和局部均匀性。本文用液态金属表面热发射电子引起坩埚壁上球形小液滴电晕放电导致物料飞溅这一理论对该现象进行了解释。在相同的沉积速率下,通过改变坩埚内黄金物料的体积占比获得两种金薄膜,对其表面形貌、红外光谱透射性能等进行了对比分析,验证了理论的正确性。结果表明:当物料体积约占坩埚体积的26%时,金膜表面出现较多黑色颗粒,其形状近似球形或椭球形,主要成分仍为金;当物料体积约占坩埚体积的90%时,金膜表面无黑色颗粒,红外光谱透射率比前者高5%。
中图分类号:
[1] HARRIS P J F. Fullerene-related structure of commercial glassy carbons[J]. Philosophical Magazine, 2004, 84(29): 3159-3167. [2] BAUER J, SCHROER A, SCHWAIGER R, et al.Approaching theoretical strength in glassy carbon nanolattices[J]. Nature Materials, 2016, 15(4): 438-443. [3] 董家君. 高压下石墨与玻璃碳结构转变研究[D]. 长春:吉林大学, 2020. [4] GONG Q J, HAN H X, WANG Y D, et al.An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode[J]. Carbon, 2020(167): 931. [5] CITTAN M, ALTUNTAŞE, ÇELIK A. Multi-walled carbon nanotube modified glassy carbon electrode as curcumin sensor[J]. Monatshefte Für Chemie-Chemical Monthly, 2020, 151(6): 881-888. [6] CHAUHAN G, ÁNGELES A L, GONZALEZ-ONZÁLEZE, et al. Nano-spaced gold on glassy carbon substrate for controlling cell behavior[J]. Advanced Materials Interfaces, 2020, 11(7): 2000238. [7] HOFFMANN R D, PÖTTGEN R, GREGORY A, et al. Synthesis, structure, chemical bonding, and properties of CaTIn2(T?=?Pd, Pt, Au)[J]. Ztschrift Für Anorganische Und Allgemne Chemie, 2015, 625(5): 789-798. [8] HEYING B, KÖSTERS, JUTTA, PÖTTGEN R. Sr4Pt10In21-the first representative of the Ho4Ni10In21 type with a divalent cation[J]. Zeitschrift Für Naturforschung B, 2019, 74(5): 443. [9] MASAI H, YANAGIDA T.Photoluminescence of ns2-type center-containing zinc borate glasses[J]. Journal of Non Crystalline Solids, 2016(431): 83-87. [10] SONG E, ZHAO H Y, LI S, et al.Metal oxide electrolytic reduction using glassy carbon as anode[J]. Transactions of the American Nuclear Society, 2016, 114(Jun.): 194-194. [11] HOFFMANN R D, POTTGEN R.Distorted bcc indium cubes as structural motifs in Ca[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2000, 6(4): 600-607. [12] BERTHEBAUD D, GASCOIN F.Microwaved assisted fast synthesis of n and p-doped Mg2Si[J]. Journal of Solid State Chemistry, 2013(202): 61-64. [13] 马晓霞, 范红, 李守生, 等. 蒸发金和芯片表层黑色颗粒分析[J]. 黄金, 2015, 36(11): 4-6. [14] 李云海, 张益平, 章文. 电子束蒸发工艺中源飞溅的控制[J]. 电子与封装, 2013(6): 7-9. [15] 付学成, 王英, 权雪玲,等. 电子束蒸镀金膜表面黑色颗粒形成的机理研究[J]. 真空科学与技术学报, 2019, 39(5): 396-400. [16] 付学成, 权雪玲, 刘民, 等. 钨坩埚蒸镀金膜表面黑色颗粒的控制研究[J]. 真空科学与技术学报, 2018, 38(2): 113-116. [17] 张以忱. 真空镀膜设备[M]. 北京: 冶金工业出版社,2009: 113-114. [18] 方应翠, 沈杰, 解志强, 等. 真空镀膜原理与技术[M]. 北京: 科学出版社, 2014: 38-39. [19] 杨津基. 气体放电[M]. 北京:科学出版社,1983:49-50. [20] 张晓燕, 冯翠菊. 均匀带电半球面底面上的电场与电势[J]. 河南师范大学学报(自然科学版), 2010, 38(3): 183-185. [21] 刘秦勇. 静电场中电场强度的计算方法[J]. 当代电大, 2003(增刊1): 63-65. |
[1] | 贺平, 张旭, 杨洋. 不同基体材料筒体内壁磁控溅射膜层工艺研究[J]. 真空, 2021, 58(6): 33-37. |
[2] | 段珊珊, 施昌勇, 杨丽珍, 刘忠伟, 张海宝, 陈强. 原子层沉积法制备Al2O3薄膜研究近况和发展趋势[J]. 真空, 2021, 58(6): 13-20. |
[3] | 朱蓓蓓, 倪昌, 秦琳, 楚建宁, 陈肖, 许剑锋. 基于磁控溅射的纳米金属薄膜沉积工艺研究*[J]. 真空, 2021, 58(6): 21-26. |
[4] | 杨曌, 罗俊尧, 李保昌, 李淑华, 沓世我, 付振晓, 宁洪龙. 复合金属薄膜层对金丝键合性能的影响[J]. 真空, 2021, 58(6): 43-47. |
[5] | 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2021, 58(6): 86-88. |
[6] | 陈谦, 杨丽珍, 刘忠伟, 张海宝, 陈强. 分子层沉积纳米薄膜的现状和发展[J]. 真空, 2021, 58(5): 26-31. |
[7] | 游锦山. 真空涂层设备SIS设计及应用[J]. 真空, 2021, 58(5): 80-84. |
[8] | 魏梦瑶, 王辉, 韩文芳, 王红莉, 苏一凡, 唐春梅, 代明江, 石倩. 中频磁控溅射制备氧化钨薄膜及电致变色性能研究*[J]. 真空, 2021, 58(5): 50-56. |
[9] | 张晓霞, 邓金祥, 孔乐, 李瑞东, 杨子淑, 张杰. 不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究*[J]. 真空, 2021, 58(5): 57-61. |
[10] | 吴忠举, 白枭, 成洋洋, 周社柱. 等静压石墨表面SiC涂层的制备与性能表征[J]. 真空, 2021, 58(5): 62-65. |
[11] | 冯杰, 成荣, 赵勇, 王彦龙, 王尚民, 张宏, 贾艳辉. 等离子体接触器放电振荡的频谱分析研究*[J]. 真空, 2021, 58(5): 72-76. |
[12] | 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2021, 58(5): 110-112. |
[13] | 李建鹏, 张驰, 李建昌. 柔性电子器件疲劳特性的研究进展*[J]. 真空, 2021, 58(5): 11-15. |
[14] | 付学成, 徐锦滨, 乌李瑛, 黄胜利, 王英. 小圆形平面靶倾斜磁控溅射镀膜均匀性研究*[J]. 真空, 2021, 58(4): 1-5. |
[15] | 纪建超, 颜悦, 哈恩华. 溶胶-凝胶法制备AZO薄膜的研究进展*[J]. 真空, 2021, 58(4): 30-35. |
|