真空 ›› 2022, Vol. 59 ›› Issue (3): 35-40.doi: 10.13385/j.cnki.vacuum.2022.03.08
胡天时1, 田修波1, 刘向力2, 巩春志1
HU Tian-shi1, TIAN Xiu-bo1, LIU Xiang-li2, GONG Chun-zhi1
摘要: 过渡层是改善膜基关系,提升薄膜质量的关键因素。本文针对常见过渡层材料Cr的外延生长过程进行了分子动力学模拟。通过对沉积过程中薄膜的表面形貌、粗糙度、径向分布函数以及膜基结合强度进行分析,研究了入射能量对薄膜质量的影响。结果表明:沉积初期,膜基界面相互作用是影响薄膜生长方式的主要因素;随入射能量升高,表面粗糙度上升,薄膜由层状生长转变为岛状生长;随沉积过程进行,低能沉积(15~50eV)时薄膜表面粗糙度逐渐升高,而高能沉积(75eV)时在刻蚀作用下表现出相反趋势,表面粗糙度逐渐降低;同时,较低能量范围沉积时膜基界面在浅注入作用下被破坏,削弱了膜基结合强度;进一步提高沉积可通过形成成分梯度层,改善膜基结合效果。本文的研究结果对于薄膜沉积过程具有重要指导意义:镀膜过程中提高入射能量并不一定能起到积极效果,沉积粒子能量必须控制在合适的范围。
中图分类号:
[1] REITER A E, DERFLINGER V H, HANSELMANN B, et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J]. Surf.Coat.Technol., 2005, 200(7): 2114-2122. [2] ZHOU S H, KUANG T C, QIU Z G, et al.Microstructural origins of high hardness and toughness in cathodic arc evaporated Cr-Al-N coatings[J]. Appl.Surf.Sci., 2019, 493: 1067-1073. [3] WANG G G, ZHANG R Y, ZHOU R, et al.Effect of ECR-assisted microwave plasma nitriding treatment on the microstructure characteristics of FCVA deposited ultra-thin ta-C films for high-density magnetic storage applications[J]. Appl.Surf.Sci., 2010, 256(10): 3024-3030. [4] WARCHOLINSKI B, GILEWICZ A, MYSLINSKI P, et al.Effect of nitrogen pressure and substrate bias voltage on the properties of Al-Cr-B-N coatings deposited using cathodic arc evaporation[J]. Tribol.Int., 2021, 154: 106744. [5] GUNDA R, BISWAS S K, BHOWMICK S, et al.Mechanical properties of rough TiN coating deposited on steel by cathodic arc evaporation technique[J]. J.Am.Ceram.Soc., 2010, 88(7): 1831-1837. [6] HU J, TIAN X B, LIU H, et al.Enhanced discharge and microstructure of the ta-C coatings by electromagnetically enhanced cathodic arc at argon atmosphere[J]. Surf.Coat.Technol., 2018, 365: 227-236. [7] KONG Y, TIAN X B, GONG C Z, et al.Microstructure and mechanical properties of Ti-Al-Cr-N films: Effect of current of additional anode[J]. Appl.Surf.Sci., 2019, 483: 1058-1068. [8] UDDEHOLM.Grinding of uddeholm tool steels[M]. 8th ed.[S.L.]Uddeholm, 2018. [9] UDDEHOLM.Polishing of uddeholm mould steel[M]. 6th ed.[S.L.]Uddeholm, 2016. [10] SPALVINS T. BRAINARD W A.Nodular growth in thick-sputtered metallic coatings[J]. J.Vac.Sci.Technol., 1974, 11: 1186-1192. [11] PANJAN P, DRNOVEK A, GSELMAN P, et al.Review of growth defects in thin films prepared by PVD techniques[J]. Coatings, 2020, 10(5): 447. [12] MATTOX D M.Handbook of physical vapor deposition(PVD) processing[J]. Matel Finishing, 1998, 61(1): 553-734. [13] HOVSEPIAN P E, EHIASARIAN A P.Six strategies to produce application tailored nanoscale multilayer structured PVD coatings by conventional and high power impulse magnetron sputtering(HIPIMS)[J]. Thin Solid Films, 2019, 688: 137409. [14] THORNTON J A, HOFFMAN D W.Stress-related effects in thin films[J]. Thin Solid Films, 1989, 171(1): 5-31. [15] KIM S H, SUN W N, LEE N E, et al.Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma[J]. Surf.Coat.Technol., 2005, 200(7): 2072-2079. [16] PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J]. J.Comput.Phys., 1995, 117(1): 1-19. [17] FONIN M, DEDKOV Y S, RÜDIGER U, et al. Growth and morphology of the epitaxial Fe(110)/MgO(111)/Fe(110) trilayers[J]. Surf.Sci., 2007, 601(10): 2166-2170. [18] PERSAUD R, NORO H, VENABLES J A.Structure and intermixing in Fe/Fe(110) and Fe/Ag/Fe(110) multilayers[J]. Surf.Sci., 1998, 401(1): 12-21. [19] BONNY G.Interatomic potential for studying ageing under irradiation in stainless steels:the FeNiCr model alloy[J]. Model.Simul.Mater.Sc., 2013, 21(8): 5897-5909. [20] DAW M S, BASKES M I.Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[J]. Phy.Rev.B, 1984, 29(12): 6443-6453. [21] 艾立强, 张相雄, 陈民, 等. 类金刚石薄膜在硅基底上的沉积及其热导率[J]. 物理学报, 2016, 65(9): 257-263. [22] 王恩哥. 薄膜生长中的表面动力学(Ⅰ)[J]. 物理学进展, 2003, 23(1): 1-61. [23] AWAZU K, WANG X M, FUJIMAKI M, et al.Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions[J]. Phys.Rev.B, 2008, 78(5): 054102. [24] 王康. Cu64Zr36非晶合金薄膜沉积与纳米压痕分子动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [25] 孙永丽. Cu-Zr 基非晶合金结构及动力学数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2010. [26] BALASHABADI P, LARIJANI M M, SHOKRI A A, et al.The effect of bias voltage on microstructure and hardness of TiN films grown by ion coating deposition[J]. Eur.Phys.J.Plus, 2015, 130(2): 1-10. [27] NAKAZAKI N, TSUDA H, TAKAO Y, et al.Two modes of surface roughening during plasma etching of silicon: role of ionized etch products[J]. J.Appl.Phys., 2014, 116(22): 223302. [28] GUTIERREZ-URRUTIA I, ZAEFFERER S, RAABE D.The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel[J]. Mat.Sci.Eng.A, 2010, 527(15): 3552-3560. [29] WU P K, LU T M.Metal/polymer adhesion enhancement by reactive ion assisted interface bonding and mixing[J]. Appl.Phys.Lett., 1997, 71(18): 2710-2712. [30] 张世旭. Cu团簇沉积到Fe(001)表面的分子动力学模拟[D]. 兰州: 兰州大学, 2014. [31] 徐鸣. 离子注入对DLC膜基的改性研究[D]. 上海: 上海交通大学, 2007. |
[1] | 孟超, 岳守晶, 轩立新, 薛洪明, 高震, 王新超. 等离子体处理对氰酸酯基复合材料表面性能影响研究*[J]. 真空, 2022, 59(2): 6-10. |
[2] | 万书宏, 林晶, 冯帅. 热丝CVD法制备金刚石涂层刀具的研究现状*[J]. 真空, 2022, 59(1): 40-47. |
[3] | 贺平, 张旭, 杨洋. 不同基体材料筒体内壁磁控溅射膜层工艺研究[J]. 真空, 2021, 58(6): 33-37. |
[4] | 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20. |
[5] | 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10-14. |
[6] | 郑才国, 陈庆川, 聂军伟, 李民久, 陈美艳. 等离子抛光石英玻璃特性研究*[J]. 真空, 2020, 57(4): 72-76. |
|