欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (2): 40-46.doi: 10.13385/j.cnki.vacuum.2020.02.08

• 薄膜 • 上一篇    下一篇

CrAlN抗冲蚀涂层制备及性能研究*

刘灵云1,2, 林松盛1,2, 王迪2, 李风1, 代明江2, 石倩2, 韦春贝2   

  1. 1.广东工业大学材料与能源学院,广东 广州 510006;
    2.广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广东 广州 510651
  • 收稿日期:2019-09-17 出版日期:2020-03-25 发布日期:2020-04-24
  • 通讯作者: 林松盛,教授级高工。
  • 作者简介:刘灵云(1995-),男,江西省萍乡市人,硕士生。
  • 基金资助:
    *国家重点研发计划项目(2016YFB0300400);广东省科技计划项目(2017A070701027,2014B070705007);广东省科学院科技提升项目(2017GDASCX-0202,2017GDASCX-0111)

Study on Preparation and Properties of CrAlN Anti-erosion Coating

LIU Ling-yun1,2, LIN Song-sheng1,2*, WANG Di2, LI Feng1, DAI Ming-jiang2, SHI Qian2, WEI Chun-bei2   

  1. 1.School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
    2.National Engineering Laboratory of Modern Materials Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510651, China
  • Received:2019-09-17 Online:2020-03-25 Published:2020-04-24

摘要: 为提高钛合金材料抗冲蚀性能,利用真空阴极电弧沉积技术在TC11钛合金上沉积CrAlN涂层,研究靶电流、偏压和气压对涂层结构及性能的影响。采用扫描电镜观察膜层表面和截面形貌,金相显微镜对表面的大颗粒进行定量分析;显微硬度计测量膜层的维氏显微硬度;采用喷砂试验机对涂层的抗冲蚀性能进行测试,通过三维表面轮廓仪测量涂层厚度和侵蚀坑的深度;X射线衍射仪表征涂层中的晶体结构。结果表明:靶电流从70A增大到110A,虽可提高涂层的沉积速率,但会导致涂层表面大颗粒增加,从而降低涂层的抗冲蚀性能;气压从1Pa增大至4Pa,可有效地减少涂层表面颗粒的尺寸及数量,但也会一定程度降低沉积速率及硬度;偏压对CrAlN涂层的结构及性能影响最大,偏压在-50V时涂层呈(200)择优取向,-100V涂层呈(111)择优取向,-200V时,涂层择优取向不明显;且随着偏压的增加,涂层的硬度及抗冲蚀性能增大,在高冲蚀角下,冲蚀的失效机理为脆性失效。结论工艺参数中靶电流对表面质量的影响最大;涂层的生长取向与偏压密切相关;CrAlN涂层的表面质量及硬度直接影响其抗砂粒冲蚀性能,偏压对涂层抗冲蚀性能影响最大。最终优化的工艺参数为:靶电流90A、偏压-100V、气压4Pa。

关键词: 钛合金, CrAlN涂层, 抗冲蚀, 靶电流, 偏压, 气压

Abstract: In order to improve the erosion resistance of titanium alloy material, CrAlN coating was deposited onto TC11 titanium alloy by vacuum cathodic arc deposition technique. The effects of target current, bias voltage and furnace pressure on the structure and properties of the coating were investigated. Scanning electron microscopy was used to observe the surface and cross-section of the film layer. Metallographic microscope was used to quantitatively analyze the large particles on the surface. Microhardness tester was used to measure the Vickers microhardness. The sandblasting tester was used to resist the erosion of the coating. The properties were tested by measuring the thickness of the coating and the depth of the etch pit by a three-dimensional surface profilometer. The X-ray diffractometer characterizes the crystal structure in the coating. Increasing the target current from 70A to 110A, although increasing the deposition rate of the coating, it will increase in the number of large particles on the surface of the coating to decrease the erosion resistance of the coating. The furnace pressure is increased from 1 Pa to 4 Pa, which is effective to reduce the size and quantity of particles on the surface of the coating, but also reduce the deposition rate and hardness to a certain extent. The bias has the greatest influence on the structure and properties of the CrAlN coating. When the bias voltage is-50V, the coating has a preferred orientation of(200). The 100V coating has a(111)preferred orientation. At-200V, the preferred orientation of the coating is not obvious; and as the bias voltage increases, the hardness and erosion resistance of the coating increase, and at high erosion angles, the failure mechanism of erosion is brittle failure. The target current has the greatest influence on the surface quality in the process parameters; the growth orientation of the coating is closely related to the bias voltage; the surface quality and hardness of the CrAlN coating directly affect the erosion resistance of the sand, and the influence of the bias voltage on the erosion resistance of the coating maximum. The final optimized process parameters are of target current 90A, bias-100V and furnace pressure 4Pa.

Key words: titanium alloy, CrAlN coating, erosion resistance, target current, bias, furnace pressure

中图分类号: 

  • TG178
[1] 于晶晶, 吴杨敏, 赵文杰, 等. 纤维增强环氧树脂复合材料抗固体颗粒流冲蚀磨损研究进展[J]. 表面技术, 2017, 46(11): 29-36.
[2] 姚梦佳, 李春福, 何俊波, 等. 抗冲蚀磨损涂层的研究进展[J]. 材料导报, 2015(2): 283-286.
[3] 何光宇, 李应红, 柴艳, 等. 航空发动机压气机叶片砂尘冲蚀防护涂层关键问题综述[J]. 航空学报, 2015, 36(6): 1733-1743.
[4] 林松盛, 周克崧, 代明江, 等. 调制周期对Ti-TiN-Zr-ZrN多层膜性能的影响[J]. 真空科学与技术学报, 2015, 35(1): 114-118.
[5] Ping R, Kan Z, Mao W, et al.The roles of Ag layers in regulating strengthening-toughening behavior and tribochemistry of the Ag/TaC nano-multilayer films[J]. Applied Surface Science, 2018, 445: S0169433218308882.
[6] Borawski B, Todd J A, Singh J, et al.The influence of ductile interlayer material on the particle erosion resistance of multilayered TiN based coatings[J]. Wear, 2011, 271(11): 2890-2898.
[7] Deng J, Wu F, Lian Y, et al.Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35(none): 10-16.
[8] 林松盛. Ti-TiN-Zr-ZrN抗冲蚀多层膜的制备、结构及性能[D]. 广州: 华南理工大学, 2016.
[9] Deng J, Wu F, Lian Y, et al.Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35(35): 10-16.
[10] Hsu C H, Lin C K, Huang W C, et al.Effect of(Ti, Al)N Nanostructured Arc-Coatings on Wear and Corrosion Properties of 4340 Alloy Steel[J]. Journal of Nanoscience & Nanotechnology, 2018, 18(4): 2823-2829.
[11] Li T P, Yin X H, Li M S, et al.Oxidation Resistance of a Cr0.50 Al0.50 N Coating Prepared by Magnetron Sputtering on Alloy K38G[J]. Oxidation of Metals, 2007, 68(3-4): 193-210.
[12] Schell N, Petersen J H, BøTTIGER J, et al. On the development of texture during growth of magnetron-sputtered CrN[J]. Thin Solid Films, 2003, 426(1): 100-110.
[13] Yu C, Wang S, Tian L, et al.Microstructure and mechanical properties of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering on AISI H13 steel[J]. Journal of Materials Science, 2009, 44(1): 300-305.
[14] 任兴润, 黄柱, 刘美霞. 直流溅射沉积CrAlN和CrN薄膜微观结构与摩擦性能分析研究[J]. 稀有金属材料与工程, 2018(4): 1100-1106.
[15] Wang L, Zhang G, Wood R J K, et al. Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application[J]. Surf Coat Tech, 2010, 204(21): 3517-3524.
[16] Vyas A, Zhou Z F, Shen Y G.Effect of aluminum contents on sputter deposited CrAlN thin films[C] Materials Science & Engineering Conference Series. 2018: 012079.
[17] Tlili B, Nouveau C, Guillemot G, et al.Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films[J]. Journal of Materials Engineering & Performance, 2018, 27(2): 457-470.
[18] Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets[J]. 2013.
[19] 卢义刚, 吴庭万. 液体分子自由程压力系数及温度系数[J]. 华南理工大学学报(自然科学版), 2000, 28(2): 106-110.
[20] 任鑫, 孔令梅. 脉冲偏压对304不锈钢表面多弧离子镀CrAlN薄膜结构和耐蚀性能的影响[J]. 材料保护, 2015, 48(10): 54-57.
[21] 蔺增, 陈彬, 乔宏, 等. 负偏压对电弧离子镀CrAlN涂层组织和性能的影响[J]. 东北大学学报(自然科学版), 2018, 39(7): 981-985.
[22] Li Z, Munroe P, Jiang Z T, et al.Designing superhard, self-toughening CrAlN coatings through grain boundary engineering[J]. Acta Materialia, 2012, 60(16): 5735-5744.
[23] Zhao J P, Meng Y, Huang D X, et al.Ti-Sn alloy nanodot composites embedded in single-crystal SiO[sub 2]by low energy dynamic coimplantation[J]. J. Appl. Phys, 2006, 100(8): 84308-84312.
[24] Min J J, Nam K H, Yun M J, et al.Nucleation and growth behavior of chromium nitride film deposited on various substrates by magnetron sputtering[J]. Surf Coat Tech, 2003, 171(1-3): 59-64.
[25] 邰清安, 柳琪, 国振兴, 等. Si掺杂对纳米硬质CrAlN涂层结构及性能影响[J]. 材料热处理学报, 2017, 38(10): 119-125.
[26] 余春燕. 闭合场非平衡磁控溅射沉积的CrAlN薄膜组织结构和性能研究 [D]. 太原: 太原理工大学, 2009.
[27] Ensinger W.Growth of Thin Films with Preferential Crystallographic Orientation by Ion Bombardment During Deposition[J]. Surface and Coatings Technology, 1994, 65(1): 90-105.
[1] 张英伟, 李晓丹, 高郑宇, 倪家强, 刘艳梅, 李建中. 激光选区熔化TC4钛合金高氯酸电解抛光工艺研究*[J]. 真空, 2020, 57(2): 78-82.
[2] 吴厚朴, 田钦文, 田修波, 巩春志. 新型双极性高功率脉冲磁控溅射电源及放电特性研究*[J]. 真空, 2019, 56(6): 1-6.
[3] 王迪, 林松盛, 刘灵云, 杨洪志, 蒋百灵, 薛玉娜, 周克崧. 表面处理技术对钛合金疲劳性能影响的研究进展*[J]. 真空, 2019, 56(6): 36-42.
[4] 宋青竹, 董辉, 鄂东梅, 王玲玲, 张宁, 乔忠路. 电磁悬浮真空熔铸技术进展[J]. 真空, 2019, 56(6): 43-48.
[5] 王槐乾, 姜宏伟. 磁控溅射反应法制备TiN纳米薄膜[J]. 真空, 2019, 56(4): 37-39.
[6] 刘婵, 王东伟, 李晓敏, 武英桐, 黄美东. 脉冲负偏压对直流磁控溅射碳膜结构和性能的影响[J]. 真空, 2019, 56(2): 69-73.
[7] 赵彦辉, 史文博, 刘忠海, 刘占奇, 于宝海. 电弧离子镀沉积工艺参数的影响[J]. 真空, 2018, 55(6): 49-59.
[8] 宋青竹, 张哲魁, 孙足来, 鄂东梅. 大型钛合金熔铸技术——真空电弧凝壳精铸设备进展[J]. 真空, 2018, 55(5): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .