欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2022, Vol. 59 ›› Issue (3): 35-40.doi: 10.13385/j.cnki.vacuum.2022.03.08

• 薄膜 • 上一篇    下一篇

入射能量对外延生长Cr薄膜表面粗糙度和膜基结合强度的影响:分子动力学模拟*

胡天时1, 田修波1, 刘向力2, 巩春志1   

  1. 1.哈尔滨工业大学 先进焊接与连接国家重点实验室,黑龙江 哈尔滨 150000;
    2.哈尔滨工业大学(深圳)材料科学与工程学院 深圳航空航天检测与成像工程实验室,广东 深圳 518055
  • 收稿日期:2021-11-27 出版日期:2022-05-25 发布日期:2022-06-01
  • 通讯作者: 田修波,教授。
  • 作者简介:胡天时(1994-),男,河北省衡水市人,博士。
  • 基金资助:
    *国家自然科学基金项目(12075071,11875119); 黑龙江省自然科学基金项目(LH2019A014)

Influence of Incident Energy on the Surface Roughness and Film/Substrate Adhesion Strength of Epitaxially Grown Cr Films:Molecular Dynamics Simulation

HU Tian-shi1, TIAN Xiu-bo1, LIU Xiang-li2, GONG Chun-zhi1   

  1. 1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150000, China;
    2. Shenzhen Engineering Laboratory of Aerospace Detection and Imaging, School of Materials Science and Engineering, Harbin Institute of Technology(Shenzhen), Shenzhen 518055, China
  • Received:2021-11-27 Online:2022-05-25 Published:2022-06-01

摘要: 过渡层是改善膜基关系,提升薄膜质量的关键因素。本文针对常见过渡层材料Cr的外延生长过程进行了分子动力学模拟。通过对沉积过程中薄膜的表面形貌、粗糙度、径向分布函数以及膜基结合强度进行分析,研究了入射能量对薄膜质量的影响。结果表明:沉积初期,膜基界面相互作用是影响薄膜生长方式的主要因素;随入射能量升高,表面粗糙度上升,薄膜由层状生长转变为岛状生长;随沉积过程进行,低能沉积(15~50eV)时薄膜表面粗糙度逐渐升高,而高能沉积(75eV)时在刻蚀作用下表现出相反趋势,表面粗糙度逐渐降低;同时,较低能量范围沉积时膜基界面在浅注入作用下被破坏,削弱了膜基结合强度;进一步提高沉积可通过形成成分梯度层,改善膜基结合效果。本文的研究结果对于薄膜沉积过程具有重要指导意义:镀膜过程中提高入射能量并不一定能起到积极效果,沉积粒子能量必须控制在合适的范围。

关键词: 入射能量, 生长模式, 表面粗糙度, 结合强度, 分子动力学

Abstract: Transition layer is a key factor to improve the film/substrate relationship and increase the quality of the film. In this paper, the epitaxially grown process of Cr, which is a common transition layer material, was simulated using molecular dynamics method. Surface topography, roughness, radial distribution function and adhesion strength was analyzed to study the effect of incident energy on the film quality. The results show that at the initial stage of deposition, the film/substrate interfacial interaction was the main factor affecting the growth mode of the film. As the incident energy increased, the growth mode changed from Frank-Vander Merve to Volmer-Weber. As the deposition process progressed, the film surface roughness gradually raised during low-energy deposition(15-50eV). However, the opposite trend exhibited during high-energy deposition(75eV) because of the etching effect, and the surface roughness decreased gradually. Meanwhile, the film/substrate interface was destroyed by the shallow injection in the lower energy range, which weakened the film/substrate adhesive strength. Further improving the deposition could improve the film/substrate adhesive effect by forming a composition gradient layer. The research results in this paper shows important guiding significance for the thin film deposition process: increasing the incident energy during the deposition process does not meaning a positive effect, and it must be controlled in a suitable energy range.

Key words: incident energy, growth mode, surface roughness, adhesion strength, molecular dynamics

中图分类号: 

  • TB43
[1] REITER A E, DERFLINGER V H, HANSELMANN B, et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J]. Surf.Coat.Technol., 2005, 200(7): 2114-2122.
[2] ZHOU S H, KUANG T C, QIU Z G, et al.Microstructural origins of high hardness and toughness in cathodic arc evaporated Cr-Al-N coatings[J]. Appl.Surf.Sci., 2019, 493: 1067-1073.
[3] WANG G G, ZHANG R Y, ZHOU R, et al.Effect of ECR-assisted microwave plasma nitriding treatment on the microstructure characteristics of FCVA deposited ultra-thin ta-C films for high-density magnetic storage applications[J]. Appl.Surf.Sci., 2010, 256(10): 3024-3030.
[4] WARCHOLINSKI B, GILEWICZ A, MYSLINSKI P, et al.Effect of nitrogen pressure and substrate bias voltage on the properties of Al-Cr-B-N coatings deposited using cathodic arc evaporation[J]. Tribol.Int., 2021, 154: 106744.
[5] GUNDA R, BISWAS S K, BHOWMICK S, et al.Mechanical properties of rough TiN coating deposited on steel by cathodic arc evaporation technique[J]. J.Am.Ceram.Soc., 2010, 88(7): 1831-1837.
[6] HU J, TIAN X B, LIU H, et al.Enhanced discharge and microstructure of the ta-C coatings by electromagnetically enhanced cathodic arc at argon atmosphere[J]. Surf.Coat.Technol., 2018, 365: 227-236.
[7] KONG Y, TIAN X B, GONG C Z, et al.Microstructure and mechanical properties of Ti-Al-Cr-N films: Effect of current of additional anode[J]. Appl.Surf.Sci., 2019, 483: 1058-1068.
[8] UDDEHOLM.Grinding of uddeholm tool steels[M]. 8th ed.[S.L.]Uddeholm, 2018.
[9] UDDEHOLM.Polishing of uddeholm mould steel[M]. 6th ed.[S.L.]Uddeholm, 2016.
[10] SPALVINS T. BRAINARD W A.Nodular growth in thick-sputtered metallic coatings[J]. J.Vac.Sci.Technol., 1974, 11: 1186-1192.
[11] PANJAN P, DRNOVEK A, GSELMAN P, et al.Review of growth defects in thin films prepared by PVD techniques[J]. Coatings, 2020, 10(5): 447.
[12] MATTOX D M.Handbook of physical vapor deposition(PVD) processing[J]. Matel Finishing, 1998, 61(1): 553-734.
[13] HOVSEPIAN P E, EHIASARIAN A P.Six strategies to produce application tailored nanoscale multilayer structured PVD coatings by conventional and high power impulse magnetron sputtering(HIPIMS)[J]. Thin Solid Films, 2019, 688: 137409.
[14] THORNTON J A, HOFFMAN D W.Stress-related effects in thin films[J]. Thin Solid Films, 1989, 171(1): 5-31.
[15] KIM S H, SUN W N, LEE N E, et al.Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma[J]. Surf.Coat.Technol., 2005, 200(7): 2072-2079.
[16] PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J]. J.Comput.Phys., 1995, 117(1): 1-19.
[17] FONIN M, DEDKOV Y S, RÜDIGER U, et al. Growth and morphology of the epitaxial Fe(110)/MgO(111)/Fe(110) trilayers[J]. Surf.Sci., 2007, 601(10): 2166-2170.
[18] PERSAUD R, NORO H, VENABLES J A.Structure and intermixing in Fe/Fe(110) and Fe/Ag/Fe(110) multilayers[J]. Surf.Sci., 1998, 401(1): 12-21.
[19] BONNY G.Interatomic potential for studying ageing under irradiation in stainless steels:the FeNiCr model alloy[J]. Model.Simul.Mater.Sc., 2013, 21(8): 5897-5909.
[20] DAW M S, BASKES M I.Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[J]. Phy.Rev.B, 1984, 29(12): 6443-6453.
[21] 艾立强, 张相雄, 陈民, 等. 类金刚石薄膜在硅基底上的沉积及其热导率[J]. 物理学报, 2016, 65(9): 257-263.
[22] 王恩哥. 薄膜生长中的表面动力学(Ⅰ)[J]. 物理学进展, 2003, 23(1): 1-61.
[23] AWAZU K, WANG X M, FUJIMAKI M, et al.Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions[J]. Phys.Rev.B, 2008, 78(5): 054102.
[24] 王康. Cu64Zr36非晶合金薄膜沉积与纳米压痕分子动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[25] 孙永丽. Cu-Zr 基非晶合金结构及动力学数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[26] BALASHABADI P, LARIJANI M M, SHOKRI A A, et al.The effect of bias voltage on microstructure and hardness of TiN films grown by ion coating deposition[J]. Eur.Phys.J.Plus, 2015, 130(2): 1-10.
[27] NAKAZAKI N, TSUDA H, TAKAO Y, et al.Two modes of surface roughening during plasma etching of silicon: role of ionized etch products[J]. J.Appl.Phys., 2014, 116(22): 223302.
[28] GUTIERREZ-URRUTIA I, ZAEFFERER S, RAABE D.The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel[J]. Mat.Sci.Eng.A, 2010, 527(15): 3552-3560.
[29] WU P K, LU T M.Metal/polymer adhesion enhancement by reactive ion assisted interface bonding and mixing[J]. Appl.Phys.Lett., 1997, 71(18): 2710-2712.
[30] 张世旭. Cu团簇沉积到Fe(001)表面的分子动力学模拟[D]. 兰州: 兰州大学, 2014.
[31] 徐鸣. 离子注入对DLC膜基的改性研究[D]. 上海: 上海交通大学, 2007.
[1] 孟超, 岳守晶, 轩立新, 薛洪明, 高震, 王新超. 等离子体处理对氰酸酯基复合材料表面性能影响研究*[J]. 真空, 2022, 59(2): 6-10.
[2] 万书宏, 林晶, 冯帅. 热丝CVD法制备金刚石涂层刀具的研究现状*[J]. 真空, 2022, 59(1): 40-47.
[3] 贺平, 张旭, 杨洋. 不同基体材料筒体内壁磁控溅射膜层工艺研究[J]. 真空, 2021, 58(6): 33-37.
[4] 白明远, 王鑫, 甄真, 牟仁德, 何利民, 许振华. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究*[J]. 真空, 2021, 58(4): 12-20.
[5] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10-14.
[6] 郑才国, 陈庆川, 聂军伟, 李民久, 陈美艳. 等离子抛光石英玻璃特性研究*[J]. 真空, 2020, 57(4): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .