欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (4): 52-57.doi: 10.13385/j.cnki.vacuum.2024.04.10

• Vacuum Acquisition System • Previous Articles     Next Articles

Simulation Analysis of Ultimate Vacuum Scheme for Coupler Warm Windows

YUE Tai, HE Chao-feng, WANG Xi-long, SUN Xing-zhong, YUN Yong-hu, CHEN Wei, DU Wen-qing, CHEN Yao-feng   

  1. Institute of Advanced Science Facilities, Shenzhen 518107, China
  • Received:2023-10-19 Online:2024-07-25 Published:2024-07-29

Abstract: The vacuum pump port of the high-power coupler warm window of the injector 1.3 GHz cryomodule of Shenzhen superconducting soft-X-ray free electron laser (S3FEL) is connected to the vacuum main via an angle valve for easy installation, leak detection and troubleshooting. In order to ensure that the ultimate pressure of the coupler warm window meets the standard before the cryomodule cools down, through theoretical calculation and software simulation, the ultimate vacuum degree that the coupler can maintain under different schemes were compared and verified. The results show that the ultimate vacuum degree of the untreated coupler tube A using a single ion pump does not meet the actual engineering indicator. After high-temperature baking of coupler tube A, its ultimate vacuum degree reaches the level of 10-7 Pa, and is better than the actual engineering indicator. After setting up two ion pumps in coupler tube A, the ultimate vacuum pressure decreases by 50%, which can meet the engineering standards by further increasing the number of ion pumps.

Key words: cryomodule, coupler, warm window, vacuum

CLC Number:  TH36;TN622

[1] ABELA R, AGHABABYAN A, ALTARELLI M, et al.XFEL: the european x-ray free-electron laser technical design report[R]. 2006.
[2] ARKAN T T, GINSBURG C M, HE Y, et al.LCLS-II 1.3 GHz design integration for assembly and cryomodule assembly facility readiness at Fermilab[C]// Proceedings of the 17th International Conference on RF Superconductivity. Whistler, Canada, 2015.
[3] ZHU Z Y, ZHAO Z T, WANG D, et al.SCLF: an 8-GeV CW SCRF linac-based x-ray FEL facility in Shanghai[C]//Proceedings of the FEL2017. Santa Fe, USA, 2017.
[4] PETERSON T J, ARKAN TT, GINSBURG C M, et al.LCLS-II 1.3 GHz cryomodule design-modified tesla-style cryomodule for CW operation[C]// Proceedings of the 17th International Conference on RF Superconductivity. Whistler, Canada, 2015.
[5] MOELLER W D, SHU Q S, SUSTA J T, et al.Development and testing of RF double window input couplers for TESLA[J]. Physica C: Superconductivity, 2006, 441(1/2): 229-232
[6] ADOLPHSEN C, FANT K, LI Z, et al.Modified TTF-3 couplers for LCLS-II[C]// Proceedings of the 17th International Conference on RF Superconductivity. Whistler, Canada, 2015.
[7] MA Z Y, HOU H T, ZHAO S J, et al.Manufacturing studies and rf test results of the 1.3 GHz fundamental power coupler prototypes[J]. Physical Review Accelerators and Beams, 2022, 25: 113501.
[8] MOELLER W D.High power coupler for the TESLA test facility[C]//Proceedings of the 9th Workshop on RF Superconductivity. Santa Fe, USA, 1999.
[9] MA Z Y, ZHAO S J, LIU X M, et al.High RF power tests of the first 1.3 GHz fundamental power coupler prototypes for the SHINE project[J]. Nuclear Science and Techniques,2022, 33(1): 107-119.
[10] HANSEN G, KISHIYAMA K, SHEN S, et al.Design and development of the vacuum systems for the APT project ED&D cryomodule[C]//Proceedings of the 1999 Particle Accelerator Conference. New York, USA: IEEE, 1999.
[11] HERMANN M, VANDONI G, KERSEVAN R, et al.Simulations of the HIE-ISOLDE radio frequency quadrupole cooler and buncher vacuum using the Monte Carlo test particle code Molflow+[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 488-491.
[12] 刘佰奇, 彭晓华, 翟纪元, 等. 1.3 GHz 9-cell超导腔加速组元的真空系统[J].真空科学与技术学报, 2016, 36(5): 538-541.
[13] 刘玉魁, 杨建斌, 肖祥正.真空工程设计[M]. 北京: 化学工业出版社, 2016.
[14] 张以忱. 真空系统设计[M]. 北京: 冶金工业出版社,2013.
[15] 姚龙, 张瑞, 王勇. 1.3 GHz高功率输入耦合器样机设计[J]. 真空科学与技术学报, 2020, 40(5): 453-457.
[16] 郭鸿震. 真空系统设计与计算[M]. 北京:冶金工业出版社, 1986.
[17] 达道安. 真空设计手册[M]. 3版. 北京:国防工业出版社, 2004.
[18] 王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2006.
[19] 姜佩贺. 面向低真空的四极质谱质量分析机理研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[20] 马慧, 王刚. COMSOL Multiphysics基本操作指南和常见问题解答[M]. 北京: 人民交通出版社, 2009
[21] 罗婷婷. 一种基于COMSOL分子流仿真的电子源电极结构设计[J]. 电子测试, 2018(8): 22-24.
[22] 黄奕勇, 李星辰, 田野, 等. COMSOL多物理场仿真入门指南[M]. 北京: 机械工业出版社, 2021.
[23] 姜佩贺, 赵占锋. 一种面向低真空环境的质量分析方法仿真研究[J]. 质谱学报, 2020, 41(6): 588-594.
[24] 张志良, 孙越强, 李永平, 等.基于COMSOL的星载四极质谱仪仿真分析[J].真空科学与技术学报, 2022, 42(7): 517-524.
[1] LI Xiang, JIANG Xiao-jiao, ZHAN Chun-ming, LIU Ang, SUN Ning, LI Jia-ping. Research on Design Method of Liquid Cooled Heater for Vacuum Coating Equipment Based on System Regression Model [J]. VACUUM, 2024, 61(4): 6-11.
[2] SONG Tao, ZHANG Bai-cheng, WANG Chun-lei, JIANG Zheng-he. Design and Research on Vacuum System of Large Series Electron Beam Melting Furnace [J]. VACUUM, 2024, 61(4): 30-34.
[3] LIU Shi-meng, ZHAO Huan-yu, WANG Jie, QIAO Zhong-lu, JIN Wei-da, ZHANG Ren-zhu. Application of Vacuum Technology in Advanced Ceramic Preparation [J]. VACUUM, 2024, 61(4): 85-91.
[4] ZHANG Pi-xian, ZHANG Yi-chen, ZHAN Chun-ming, JIN Wei-da. Application and Development Trend of Dry Vacuum Pump in the Field of Semiconductor and New Energy [J]. VACUUM, 2024, 61(3): 1-8.
[5] ZHAO Qian-yu, YU Zhen-hua, LI Heng-lin, GAN Shu-yi, ZHANG Dong-qing. Prediction and Calculation of Vacuum Pump Pumping Speed Curve Based on MATLAB/GUI [J]. VACUUM, 2024, 61(3): 9-12.
[6] MA Bao-hong, DUAN Hai-xia, DU Xue-feng, SHAO Yu-song, LI Zhen-kai. Research Progress of Influence of Multi-field Coupling on Inclusion Removal in Vacuum Continuous Casting Tundish [J]. VACUUM, 2024, 61(3): 90-95.
[7] HU Hao, LI Kai, LIU Hong-tao, SHAO Qing, HAN Tian, YU Miao, LIU Hang, LI Hao-chen. Application of Vacuum Technology in High-temperature Superconducting Electrodynamic Suspension Transportation System [J]. VACUUM, 2024, 61(3): 105-109.
[8] LI Xiao-jin, LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LIU Xiao-wen. A Design Method Based on TRIZ Theory to Enhance the Base Pressure of Roots Vacuum Pump [J]. VACUUM, 2024, 61(2): 62-67.
[9] LI Fu-song, WANG Wen-jun, LIN Wei-jian, DOU Xuan-kai, CHEN Bin, ZHAO Yi. Design on Oil Gas Separation System of Oil Injection Screw Vacuum Pump [J]. VACUUM, 2024, 61(2): 73-77.
[10] LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LI Xiao-jin, LIU Xiao-wen, WANG Yi. Design and Analysis of a Rotor Profile for Roots Vacuum Pumps with an Elliptical Waist [J]. VACUUM, 2024, 61(1): 47-51.
[11] HE Tian-yi, YUE Xiang-ji, ZHANG Zhi-jun, BA De-chun, FENG Xiao-rong, YANG Fan. Numerical Simulation of Gas Flow in a Fixed Pitch Screw Vacuum Pump [J]. VACUUM, 2024, 61(1): 52-57.
[12] ZHANG Wan-fu, LI Qiang, LI Jun, LIU Jia-xue, WANG De-hong, LUO Jun-yi. Analysis and Optimization Applications of Vacuum System for VIDP Furnace During Special Alloy Manufacturing Process [J]. VACUUM, 2024, 61(1): 58-63.
[13] LIU Zhong-bo. Application of Vacuum System in Simulating Low-pressure Area Environment on Martian Surface [J]. VACUUM, 2024, 61(1): 64-67.
[14] YAN Chao, ZHANG Tao, JIA Zi-zhao, CHENG Cheng, XU Wen-qiang. Development of Feeding and Casting Ingot Dragging Device for Electron Beam Melting [J]. VACUUM, 2024, 61(1): 78-82.
[15] ZHENG Yi-ming, WANG Xu-di, WU Jun. Research Progress in Quantization of Vacuum Metrology [J]. VACUUM, 2023, 60(6): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .