欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (5): 47-50.doi: 10.13385/j.cnki.vacuum.2023.05.06

• Thin Film • Previous Articles     Next Articles

Development of Rectangular Planar Magnetic Control Target with Dynamic Magnetic Field

LIU Wen-li, LIU Xu, YIN Xiang   

  1. Beijing NAURA Vacuum Technology Co., Ltd., Beijing 100015, China
  • Received:2022-09-07 Online:2023-09-25 Published:2023-09-26

Abstract: To solve the problem of low target utilization rate during the use of rectangular magnetron sputtering targets, NAURA designed and fabricated a rectangular planar magnetic control target with dynamic magnetic field whose magnet components can move horizontally and vertically. The equipment drives the magnet assembly to scan along the width direction of the target material through the motor, so that the etching track expands in the width direction on the target surface, the etched area of the target surface increases, and the utilization rate of the target material improves. The vertical height of the magnet assembly is adjusted by the motor to reduce the relative change of the magnetic field intensity on the surface of the target material and to improve the utilization rate of the target material. The test results show that the target utilization rate of the dynamic magnetic field rectangular planar magnetic control target designed and fabricated by NAURA increases to 55%~60%, which greatly reduces the production cost. At present, the equipment has been recognized by industry customers.

Key words: magnetron sputtering, rectangular planar target, target utilization rate, scanning magnetic field

CLC Number:  TB43;O461

[1] 张以忱, 王德志, 李灿伦, 等. 圆平面磁控溅射靶磁场的ANSYS模拟分析[J]. 真空, 2011, 48(2): 1-5.
[2] 石晓倩. 磁控溅射靶的研发[D]. 大连: 大连交通大学, 2020.
[3] LIU S, CHEN J, SUN B, et al.Evolution of microstructure of IGZO ceramic target during magnetron sputtering[J]. Ceramics International, 2022, 48(6): 7500-7511.
[4] GUO D Z, CHEN S K, MA Y S.Simulation of plasma properties in magnetron sputtering for two kinds of cathode targets[J]. Radiation Detection Technology and Methods, 2020(4): 10-16.
[5] 石晓倩, 于荣环, 乌云额尔德尼, 等.基于磁控溅射靶的磁场分布优化[J]. 大连交通大学学报, 2019, 40(4): 108-111.
[6] 陈长平, 佘鹏程, 陈峰武, 等. 高靶材利用率高镀膜均匀性条形溅射靶的设计与实现[J]. 中国集成电路, 2021(7): 70-73.
[7] 刘齐荣, 董国波, 高方圆, 等. 平面磁控溅射靶磁场的模拟优化设计[J]. 真空科学与技术学报, 2013, 33(12): 1223-1228.
[8] 薛莹洁. 平面磁控溅射靶的优化设计及膜厚均匀性分析[D]. 西安: 陕西科技大学, 2017.
[9] 郭帆. 双靶磁控溅射过程仿真及其实验的研究[D]. 哈尔滨: 哈尔滨商业大学, 2022.
[10] IDE T, HOSSAIN A, NAKAMURA Y, et al.Rotational cross-shaped magnetized radio-frequency sputtering plasma source for uniform circular target utilization[J]. Journal of Vacuum Science & Technology A, 2017, 35(6): 061312.
[11] GENCOA. Single rectangular[EB/OL].[2022-09-06]. https://www.gencoa.com/single-rectangular.
[12] 石中兵, 童洪辉, 赵嘉学. 磁控溅射矩形靶磁场的优化设计[J]. 真空与低温, 2004, 10(2): 112-116.
[13] OHTSU Y, TANAKA R, NAKASHIMA T. Development of rotational maze-shaped RF magnetron plasma for successful target utilization and thin-film preparation[J]. Japanese Journal of Applied Physics, 2021, 60(SA): SAAB01.
[14] 黄福民, 王朴. 偏心旋转移动平面磁控溅射在ITO玻璃生产中的应用与探讨[J]. 真空, 2005, 42(3): 27-29.
[15] ISEKI T.Flat erosion magnetron sputtering with a moving unbalanced magnet[J]. Vacuum, 2006, 80(7): 662-666.
[16] 张以忱. 真空镀膜技术[M]. 北京: 冶金工业出版社, 2009.
[17] 夏先春. 物理气相沉积镀膜机器关键零部件设计与分析[D]. 苏州: 苏州大学, 2017.
[18] 张以忱. 真空镀膜设备[M]. 北京: 冶金工业出版社, 2009.
[19] 李鹤. 矩形磁控溅射靶磁场仿真与优化设计[D]. 沈阳: 东北大学, 2008.
[20] KUWAHARA, K, FUJIYAMA H.Application of the child-langmuir law to magnetron discharge plasmas[J]. IEEE Transactions on Plasma Science, 1994, 22(4): 442-448.
[21] 沈向前, 谢泉, 肖清泉, 等. 磁控溅射靶材刻蚀特性的模拟研究[J].真空,2012,49(1):65-69.
[22] 韩大凯, 陈庆川, 王经权. 磁控溅射靶的磁路设计[J]. 真空, 2007, 44(6): 14-17.
[1] ZHANG Yan-peng, CAO Zhi-qiang, FU Qiang, CAO Lei, LIU Xu. Study of the Influence of Process Parameters of Copper Coating Fabricated by Roll to Roll Machine on Electronic Property of Composite Current Collector [J]. VACUUM, 2023, 60(4): 8-12.
[2] ZHANG Han-yan, ZHENG Dan-xu, SHEN Yi, CHEN Yu-yun. Research of Insulation of Silicon Oxide Film Produced by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2023, 60(2): 34-38.
[3] ZHANG Jian, QI Zhen-hua, LI Jian-hao, NIU Xia-bin, XU Quan-guo, ZONG Shi-qiang. Growth, Characterization of ITO Films Deposited by DC Magnetron Sputtering [J]. VACUUM, 2022, 59(6): 45-50.
[4] ZHAO Qi, MAN Yu-yan, LI Su-ya, LI Song-yuan, LI Lin. Research on Performance Controlling Method of Fluorocarbon Nanostructured Film for Dry Reactors [J]. VACUUM, 2022, 59(6): 51-55.
[5] XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6.
[6] ZHANG Jian, LI Jian-hao, QI Zhen-hua. Effect of Process Parameters on SiC Film Properties under DC Magnetron Sputtering [J]. VACUUM, 2022, 59(4): 52-55.
[7] ZHANG Hui, Wang Xiao-bo, ZHANG Wei-xin, GONG Chun-zhi, TIAN Xiu-bo. Effect of Substrate Bias Mode on Structure and Hydrogen Resistance of CrN Thin Films [J]. VACUUM, 2022, 59(1): 18-23.
[8] LIU Yuan-dong. Study on the Properties of Large-area ZnO Thin Films Fabricated by Magnetron Sputtering Deposition [J]. VACUUM, 2022, 59(1): 29-32.
[9] ZHU Bei-bei, NI Chang, QIN Lin, CHU Jian-ning, CHEN Xiao, XU Jian-feng. Nano Film Deposition Technology Based on Magnetron Sputtering [J]. VACUUM, 2021, 58(6): 21-26.
[10] HE Ping, ZHANG Xu, YANG yang. Study on Magnetron Sputtering Film Process on Inner Wall of Cylinder with Different Matrix Materials [J]. VACUUM, 2021, 58(6): 33-37.
[11] YANG Zhao, LUO Jun-yao, LI Bao-chang, LI Shu-hua, TA Shi-wo, FU Zhen-xiao, NING Hong-long. Effect of Metallic Multilayer Films on Gold Wire Bonding Properties [J]. VACUUM, 2021, 58(6): 43-47.
[12] WEI Meng-yao, WANG Hui, HAN Wen-fang, WANG Hong-li, SU Yi-fan, TANG Chun-mei, DAI Ming-jiang, SHI Qian. Study on Electrochromic Properties of Tungsten Oxide Films Deposited by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2021, 58(5): 50-56.
[13] ZHANG Xiao-xia, DENG Jin-xiang, KONG Le, LI Rui-dong, YANG Zi-shu, ZHANG Jie. Preparation and Study of Si-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(5): 57-61.
[14] FU Xue-cheng, XU Jin-bin, WU Li-ying, HUANG Sheng-li, WANG Ying. Study on Uniformity of Inclined Magnetron Sputtering with Small Circular Plane Target [J]. VACUUM, 2021, 58(4): 1-5.
[15] ZHANG Jian, NIU Xia-bin, LI Jian-hao, QI Zhen-hua. Effect of RF Power and Sputtering Pressure on Al Film Sputtered on Polythylene Terephthalate Substrates [J]. VACUUM, 2021, 58(4): 21-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!