欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (1): 21-26.doi: 10.13385/j.cnki.vacuum.2024.01.03

• 薄膜 • 上一篇    下一篇

亚纳米孔石墨烯复合薄膜新型标准漏孔制备及其渗氦性能研究*

刘招贤, 孟冬辉, 任国华, 张骁, 韩琰, 刘楚彦, 孙立臣, 闫荣鑫   

  1. 北京卫星环境工程研究所,北京 100094
  • 收稿日期:2023-04-28 出版日期:2024-01-25 发布日期:2024-01-24
  • 通讯作者: 闫荣鑫,研究员。
  • 作者简介:刘招贤(1990-),男,河北邢台人,博士,工程师。
  • 基金资助:
    * 科工局技术基础科研项目(JSJL2018203B016)

Preparation and Helium Permeation Properties of New Leak Elements Based on Subnanoporous Graphene Composite Membranes

LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, ZHANG Xiao, HAN Yan, LIU Chu-yan, SUN Li-chen, YAN Rong-xin   

  1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
  • Received:2023-04-28 Online:2024-01-25 Published:2024-01-24

摘要: 标准漏孔是氦质谱检漏仪的校准装置,为了提高氦质谱仪检漏灵敏度,必须降低标准漏孔漏率下限。针对目前传统材料加工制作的标准漏孔难以通过改进加工工艺降低漏率下限的情况,利用CVD法制作了一种亚纳米孔石墨烯复合薄膜新型标准漏孔,研究了其渗氦性能和制备工艺稳定性。结果表明:单层石墨烯/PMMA复合薄膜单位面积漏率为4.17×10-12~1.09×10-11 Pa·m3/(cm2·s·Pa),通过调节新型材料渗透面积,可制作漏率下限达10-12 Pa·m3/s量级的标准漏孔。

关键词: 石墨烯, 标准漏孔, 极小漏率

Abstract: The standard leak element is the essential calibration device for the helium mass spectrometry leak detector. To improve the sensitivity of the helium mass spectrometry leak detector, the lower leak limit of the standard leak element should be reduced. In view of the problem that it is difficult to reduce the lower leak limit of the standard leak element made of traditional materials by improving the processing technology. A new type of standard leak element based on subnanoporous graphene composite membranes was prepared using CVD method, and the helium permeation performance and preparation process stability were studied. The results show that the leak rate per unit area of single-layer graphene/PMMA composite membranes is 4.17×10-12~1.09×10-11 Pa·m3/(cm2·s·Pa), and the leak element with a lower limit leak rate of 10-12 Pa·m3/s can be made by adjusting the penetration area of the composite membranes.

Key words: graphene, leak element, ultralow leak rate

中图分类号:  TB774

[1] 师立侠, 王凯, 汪力, 等. 面向探月工程应用的几种新型工质检漏技术[J]. 航天器环境工程, 2020, 27(3):310-314.
[2] CHU H M, SASAKI T, HANE K.Design, fabrication, and vacuum package process for high performance of 2D scanning MEMS micromirror[C]//16th International IEEE Solid-State Sensors Actuators and Microsystems Conference. Beijing, China: IEEE, 2011: 558-561.
[3] JAU Y Y, PARTNER H, SEHWINDT P D, et al.Low-power, miniature 171 Yb ion clock using an ultra-small vacuum package[J]. Applied Physics Letters, 2012, 101(25):253518.
[4] FISETTE B, CHEVALIER C, LEPINE A, et al. Design and fabrication of a scalable high-reliability vacuum sealed package for infrared detectors[C]//4th Electronic System-Integration Technology Conference. Amsterdam, Netherlands: IEEE, 2012: l-6.
[5] 肖力波, 陈旭, 黄天斌, 等. 超灵敏检漏的实时校准[J]. 真空科学与技术学报, 2006, 26(1): 54-56.
[6] 达道安. 真空设计手册[M]. 3版. 北京:国防工业出版社, 2004: 1318.
[7] CHAN C K, YEH S D, CHANG C C, et al.A flange-type standard leak element and its vacuum applications[J]. Vacuum, 2021, 184: 109945.
[8] CHAN C K, TU C Y, YEH S D, et al.A gasket-type standard leak element using femtosecond laser micromachining[J]. Vacuum, 2020, 180: 109650.
[9] ZHOU W T, BI H L, YU Z H, et al.Fabrication of the nanofluidic channels type leak assembly based on the glass frit sealing method[J]. Journal of Vacuum Science & Technology B, 2019, 37(5): 050603.
[10] IERARDI V, BECKER U, PANTAZIS S, et al.Nano-holes as standard leak elements[J]. Measurement, 2014, 58: 335-341.
[11] ZHU A Q, ZHAO Y H, WANG X D, et al.New leak assembly based on fluidic nanochannels[J]. Journal of Vacuum Science & Technology A, 2016, 34(5): 050604.
[12] ZHAO Y H, CHENG Y J, ZHANG Q, et al.New leak element using anodic aluminum oxide[J]. Vacuum, 2016, 131: 111-114.
[13] LEE C, WEI X D, KYSAR W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[14] CHEN Y, ZOU J, CAMPBELL S J, et al.Boron nitride nanotubes: pronounced resistance to oxidation[J]. Applied Physics Letters, 2004, 84(13): 2430-2432.
[15] BUNCH J S, VERBRIDGE S S, ALDEN J S, et al.Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
[16] LEENAERTS O, PARTOENS B, PEETERS F M.Graphene: a perfect nanoballoon[J]. Applied Physics Letters, 2008, 93(19):193107.
[17] LI X S, CAI W W, AN J, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J] Science, 2009, 324(5932): 1312-1314.
[18] LEE W C, BONDAZ L, HUANG S, et al.Centimeter-scale gas-sieving nanoporous single-layer graphene membrane[J] Journal of Membrane Science, 2021, 618: 118745.
[19] BOUTILIER M S, SUN C, O'HERN S, et al. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation[J]. ACS Nano, 2014, 8(1): 841-849.
[20] WANG L, DRAHUSHUK L W, CANTLEY L, et al.Molecular valves for controlling gas phase transport made from discrete angstrom-sized pores in graphene[J]. Nature Nanotechnology, 2015, 10(9): 785-790.
[21] ZHANG Y, ZHANG L Y, ZHOU C W.Review of chemical vapor deposition of graphene and related applications[J]. Accounts of Chemical Research, 2013, 46(10): 2329-2339.
[22] LOCK E H, BARAKET M, LASKOSKI M, et al.High-quality uniform dry transfer of graphene to polymers[J]. Nano letters, 2014, 12(1): 102-107.
[23] CANCADO L G, JORIO A, FERREIRA E, et al.Quantifying defects in graphene via Raman spectroscopy at different excitation energies[J]. Nano Letters, 2011,11(8): 3190-3196.
[24] FERRARI A C, MEYER J C, SCARDACI V, et al.Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[1] 黄光宏, 李迪, 李娜, 甄真, 王鑫, 许振华. PECVD法制备石墨烯过程中不同生长阶段H2的作用分析*[J]. 真空, 2024, 61(1): 34-40.
[2] 方久康, 董淑宏. 基于分子动力学方法模拟石墨烯膜剥离行为*[J]. 真空, 2023, 60(5): 60-65.
[3] 祝维, 陆群旭, 钱维金, 黄卫军, 董长昆. 新型碳纳米管微焦点电子源研究*[J]. 真空, 2022, 59(1): 48-53.
[4] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10-14.
[5] 高超, 张吉峰, 唐榕. 应用于石墨烯制备的CVD反应炉研制[J]. 真空, 2020, 57(3): 30-33.
[6] 冉彪, 刘飞, 于翔. 利用非晶SiC在硬质合金上原位生长石墨烯[J]. 真空, 2019, 56(4): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .