真空 ›› 2024, Vol. 61 ›› Issue (1): 34-40.doi: 10.13385/j.cnki.vacuum.2024.01.05
黄光宏1, 李迪2, 李娜1, 甄真1, 王鑫1, 许振华1
HUANG Guang-hong1, LI Di2, LI Na1, ZHEN Zhen1, WANG Xin1, XU Zhen-hua1
摘要: 石墨烯作为一种性能独特的新型二维材料,在航空航天、电子器件、医学生物等领域具有巨大的发展潜力。采用等离子体增强化学气相沉积(PECVD)法,以铜箔为基底,利用氢气和甲烷混合气体制备了石墨烯,研究了生长及冷却阶段H2对石墨烯形核及生长的作用机理。结果表明:在PECVD过程中,石墨烯生长前采用H2等离子体对铜基底预刻蚀会导致基底粗糙度增加,从而产生较多的形核位点,不利于低密度大尺寸石墨烯晶粒的生长;生长过程中H2会对多层石墨烯刻蚀,较高的H2流量下可以形成单层石墨烯;生长结束后通入H2保温一定时间,石墨烯会被刻蚀成条带状,这种刻蚀随着保温时间的延长而加剧。
中图分类号: TB322
[1] | NOVOSELOV K S, CIME A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5296): 666-669. |
[2] | GEIM A K, NOVOSELOV K S.The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
[3] | MEYER J C, GEIM A K, KATSNELSON M I, et al.The structure of suspended graphene sheets[J]. Nature, 2007,446(7131): 60-63. |
[4] | NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. |
[5] | NOVOSELOV K S, MOROZOV S V, MOHINDDIN T M G, et al. Electronic properties of graphene[J]. Physica Status Solidi B, 2007, 244(11): 4106-4111. |
[6] | WOO Y, KIM D C, JEON D Y, et al.Large-grained and highly-ordered graphene synthesized by radio frequency plasma-enhanced chemical vapor deposition[J]. ECS Transactions, 2009, 19(5): 111-114. |
[7] | NANDAMURI G, ROUMIMOV S, SOLANKIK R.Remote plasma assisted growth of graphene films[J]. Applied Physics Letters, 2010, 96(15): 154101. |
[8] | PENG K J, WU C L, LIN Y H, et al.Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature[J]. Journal of Materials Chemistry C, 2013, 1(24): 3862-3870. |
[9] | KIM J, ISHIHARA M, KOGA Y, et al.Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition[J]. Applied Physics Letters, 2011, 98(9): 091502. |
[10] | WANG S M, PEI Y H, WANG X, et al.Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition[J]. Journal of Physics D: Applied Physics, 2010, 43(45): 455402. |
[11] | VAN DER LAAN T, KUMAR S, OSTRIKOV K K. Water-mediated and instantaneous transfer of graphene grown at 220 ℃ enabled by a plasma[J]. Nanoscale, 2015,7(48): 20564-20570. |
[12] | WANG S M, QIAO L, ZHAO C M, et al.A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition[J]. New Journal of Chemistry, 2013, 37(5): 1616-1622. |
[13] | QI J L, ZHANG L X, CAO J, et al.Synthesis of graphene on a Ni film by radio-frequency plasma-enhanced chemical vapor deposition[J]. Chinese Science Bulletin, 2012, 57(23): 3040-3044. |
[14] | HONG H K, KIM N Y, YOON A, et al.Synthesis of high-quality monolayer graphene by low-power plasma[J]. Current Applied Physics, 2018, 19(1): 44-49. |
[15] | CHANG Y C, YEN C C, TSAI H C, et al.Characteristics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2020, 159: 570-578. |
[16] | 力伯曼M A,里登伯格A J. 等离子体放电与材料工艺原理[M]. 2版.北京:电子工业出版社, 1900. |
[17] | CHAN S H, CHEN S H, LIN W T, et al.Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition[J]. Nanoscale Research Letters, 2013, 8: 285. |
[18] | KIM Y S, LEE J H, KIM Y D, et al.Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition[J]. Nanoscale, 2013, 5(3): 1221-1226. |
[19] | YAMADA T, ISHIHARA M, KIM J, et al.A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature[J]. Carbon, 2012, 50(7): 2615-2619. |
[20] | HESJEDAL T.Continuous roll-to-roll growth of graphene films by chemical vapor deposition[J]. Applied Physics Letters, 2011, 98: 133106. |
[21] | WEI Y, HE C, ZHANG L, et al.Growth, characterization, and properties of nanographene[J]. Small, 2012, 8(9): 1429-1435. |
[22] | PENG Z, YAN Z, SUN Z, et al.Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel[J]. ACS Nano, 2011, 5(10): 8241-8247. |
[23] | YEN C C, CHANG Y C, TSAI H C, et al.Nucleation and growth dynamics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2019, 154: 420-427. |
[24] | LI P, LI Z, YANG J.Dominant kinetic pathways of graphene growth in chemical vapor deposition: the role of hydrogen[J]. The Journal of Physical Chemistry C, 2017,121(46): 25949-25955. |
[25] | WU B, GENG D, XU Z, et al.Self-organized graphene crystal patterns[J]. NPG Asia Materials, 2013, 5(2): 36. |
[26] | WU F, LEVITIN G, HESS D W.Low-temperature etching of Cu by hydrogen-based plasmas[J]. ACS Applied Materials & Interfaces, 2010, 2(8): 2175-2179. |
[27] | CAMPOS L C, MANFRINATO V R, SANCHEZ-YAMAGISHI J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene[J]. Nano Letters, 2009, 9(7): 2600-2604. |
[28] | DATTA S S, STRACHAN D R, KHAMIS S M, et al.Crystallographic etching of few-layer graphene[J]. Nano Letters, 2008, 8(7): 1912-1915. |
[29] | WANG X, DAI H.Etching and narrowing of graphene from the edges[J]. Nature Chemistry, 2010, 2(8): 661-665. |
[1] | 刘招贤, 孟冬辉, 任国华, 张骁, 韩琰, 刘楚彦, 孙立臣, 闫荣鑫. 亚纳米孔石墨烯复合薄膜新型标准漏孔制备及其渗氦性能研究*[J]. 真空, 2024, 61(1): 21-26. |
[2] | 方久康, 董淑宏. 基于分子动力学方法模拟石墨烯膜剥离行为*[J]. 真空, 2023, 60(5): 60-65. |
[3] | 祝维, 陆群旭, 钱维金, 黄卫军, 董长昆. 新型碳纳米管微焦点电子源研究*[J]. 真空, 2022, 59(1): 48-53. |
[4] | 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10-14. |
[5] | 高超, 张吉峰, 唐榕. 应用于石墨烯制备的CVD反应炉研制[J]. 真空, 2020, 57(3): 30-33. |
[6] | 冉彪, 刘飞, 于翔. 利用非晶SiC在硬质合金上原位生长石墨烯[J]. 真空, 2019, 56(4): 24-30. |
|