欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (1): 34-40.doi: 10.13385/j.cnki.vacuum.2024.01.05

• 薄膜 • 上一篇    下一篇

PECVD法制备石墨烯过程中不同生长阶段H2的作用分析*

黄光宏1, 李迪2, 李娜1, 甄真1, 王鑫1, 许振华1   

  1. 1.中国航发北京航空材料研究院,航空材料先进腐蚀与防护航空科技重点实验室,北京 100095;
    2.新疆中油建筑安装工程有限责任公司,新疆维吾尔自治区 乌鲁木齐 830092
  • 收稿日期:2023-07-06 出版日期:2024-01-25 发布日期:2024-01-24
  • 通讯作者: 许振华,研究员。
  • 作者简介:黄光宏(1978-),男,云南省丽江市人,硕士,高级工程师。
  • 基金资助:
    * 中国科协青年人才托举工程(NO.YESS20200306)

Effect of H2 on the Graphene Growth at Different Stages in the Plasma Enhanced Chemical Vapor Deposition Process

HUANG Guang-hong1, LI Di2, LI Na1, ZHEN Zhen1, WANG Xin1, XU Zhen-hua1   

  1. 1. AECC Beijing Institute of Aeronautical Materials, Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing 100095, China;
    2. XINJIANG Petrochina Construction and Installation Engineering Co., Ltd., Wulumuqi 830092, China
  • Received:2023-07-06 Online:2024-01-25 Published:2024-01-24

摘要: 石墨烯作为一种性能独特的新型二维材料,在航空航天、电子器件、医学生物等领域具有巨大的发展潜力。采用等离子体增强化学气相沉积(PECVD)法,以铜箔为基底,利用氢气和甲烷混合气体制备了石墨烯,研究了生长及冷却阶段H2对石墨烯形核及生长的作用机理。结果表明:在PECVD过程中,石墨烯生长前采用H2等离子体对铜基底预刻蚀会导致基底粗糙度增加,从而产生较多的形核位点,不利于低密度大尺寸石墨烯晶粒的生长;生长过程中H2会对多层石墨烯刻蚀,较高的H2流量下可以形成单层石墨烯;生长结束后通入H2保温一定时间,石墨烯会被刻蚀成条带状,这种刻蚀随着保温时间的延长而加剧。

关键词: 石墨烯, 等离子体辅助化学气相沉积, H2等离子体

Abstract: Graphene, a new two-dimensional material with excellent performance, has great potential for applications in the fields of aerospace, electronic devices, and bio-medical. Plasma enhanced chemical vapor deposition (PECVD) was used to prepare grapheneon copper foil using a mixture of hydrogen and methane gas. The mechanism of H2 on the nucleation and growth of graphenein growth and cooling stage of PECVD was studied. The results show that in the PECVD process, the pre-etching of copper substrate by H2 plasma before graphene growth would increase the roughness of the substrate, which is not conducive to the growth of low-density and large-size graphene grains. During the growth process, H2 could etch multiple layers of graphene, and a single layer of graphene could be formed at higher H2 flow rate. After the end of growth, holdingthe graphene in H2 for a certain period of time, it would be etched into ribbons, and the etching would be intensified with the extension of holding time.

Key words: graphene, PECVD, H2 plasma

中图分类号:  TB322

[1] NOVOSELOV K S, CIME A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5296): 666-669.
[2] GEIM A K, NOVOSELOV K S.The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[3] MEYER J C, GEIM A K, KATSNELSON M I, et al.The structure of suspended graphene sheets[J]. Nature, 2007,446(7131): 60-63.
[4] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
[5] NOVOSELOV K S, MOROZOV S V, MOHINDDIN T M G, et al. Electronic properties of graphene[J]. Physica Status Solidi B, 2007, 244(11): 4106-4111.
[6] WOO Y, KIM D C, JEON D Y, et al.Large-grained and highly-ordered graphene synthesized by radio frequency plasma-enhanced chemical vapor deposition[J]. ECS Transactions, 2009, 19(5): 111-114.
[7] NANDAMURI G, ROUMIMOV S, SOLANKIK R.Remote plasma assisted growth of graphene films[J]. Applied Physics Letters, 2010, 96(15): 154101.
[8] PENG K J, WU C L, LIN Y H, et al.Hydrogen-free PECVD growth of few-layer graphene on an ultra-thin nickel film at the threshold dissolution temperature[J]. Journal of Materials Chemistry C, 2013, 1(24): 3862-3870.
[9] KIM J, ISHIHARA M, KOGA Y, et al.Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition[J]. Applied Physics Letters, 2011, 98(9): 091502.
[10] WANG S M, PEI Y H, WANG X, et al.Synthesis of graphene on a polycrystalline Co film by radio-frequency plasma-enhanced chemical vapour deposition[J]. Journal of Physics D: Applied Physics, 2010, 43(45): 455402.
[11] VAN DER LAAN T, KUMAR S, OSTRIKOV K K. Water-mediated and instantaneous transfer of graphene grown at 220 ℃ enabled by a plasma[J]. Nanoscale, 2015,7(48): 20564-20570.
[12] WANG S M, QIAO L, ZHAO C M, et al.A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition[J]. New Journal of Chemistry, 2013, 37(5): 1616-1622.
[13] QI J L, ZHANG L X, CAO J, et al.Synthesis of graphene on a Ni film by radio-frequency plasma-enhanced chemical vapor deposition[J]. Chinese Science Bulletin, 2012, 57(23): 3040-3044.
[14] HONG H K, KIM N Y, YOON A, et al.Synthesis of high-quality monolayer graphene by low-power plasma[J]. Current Applied Physics, 2018, 19(1): 44-49.
[15] CHANG Y C, YEN C C, TSAI H C, et al.Characteristics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2020, 159: 570-578.
[16] 力伯曼M A,里登伯格A J. 等离子体放电与材料工艺原理[M]. 2版.北京:电子工业出版社, 1900.
[17] CHAN S H, CHEN S H, LIN W T, et al.Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition[J]. Nanoscale Research Letters, 2013, 8: 285.
[18] KIM Y S, LEE J H, KIM Y D, et al.Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition[J]. Nanoscale, 2013, 5(3): 1221-1226.
[19] YAMADA T, ISHIHARA M, KIM J, et al.A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature[J]. Carbon, 2012, 50(7): 2615-2619.
[20] HESJEDAL T.Continuous roll-to-roll growth of graphene films by chemical vapor deposition[J]. Applied Physics Letters, 2011, 98: 133106.
[21] WEI Y, HE C, ZHANG L, et al.Growth, characterization, and properties of nanographene[J]. Small, 2012, 8(9): 1429-1435.
[22] PENG Z, YAN Z, SUN Z, et al.Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel[J]. ACS Nano, 2011, 5(10): 8241-8247.
[23] YEN C C, CHANG Y C, TSAI H C, et al.Nucleation and growth dynamics of graphene grown through low power capacitive coupled radio frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2019, 154: 420-427.
[24] LI P, LI Z, YANG J.Dominant kinetic pathways of graphene growth in chemical vapor deposition: the role of hydrogen[J]. The Journal of Physical Chemistry C, 2017,121(46): 25949-25955.
[25] WU B, GENG D, XU Z, et al.Self-organized graphene crystal patterns[J]. NPG Asia Materials, 2013, 5(2): 36.
[26] WU F, LEVITIN G, HESS D W.Low-temperature etching of Cu by hydrogen-based plasmas[J]. ACS Applied Materials & Interfaces, 2010, 2(8): 2175-2179.
[27] CAMPOS L C, MANFRINATO V R, SANCHEZ-YAMAGISHI J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene[J]. Nano Letters, 2009, 9(7): 2600-2604.
[28] DATTA S S, STRACHAN D R, KHAMIS S M, et al.Crystallographic etching of few-layer graphene[J]. Nano Letters, 2008, 8(7): 1912-1915.
[29] WANG X, DAI H.Etching and narrowing of graphene from the edges[J]. Nature Chemistry, 2010, 2(8): 661-665.
[1] 刘招贤, 孟冬辉, 任国华, 张骁, 韩琰, 刘楚彦, 孙立臣, 闫荣鑫. 亚纳米孔石墨烯复合薄膜新型标准漏孔制备及其渗氦性能研究*[J]. 真空, 2024, 61(1): 21-26.
[2] 方久康, 董淑宏. 基于分子动力学方法模拟石墨烯膜剥离行为*[J]. 真空, 2023, 60(5): 60-65.
[3] 祝维, 陆群旭, 钱维金, 黄卫军, 董长昆. 新型碳纳米管微焦点电子源研究*[J]. 真空, 2022, 59(1): 48-53.
[4] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10-14.
[5] 高超, 张吉峰, 唐榕. 应用于石墨烯制备的CVD反应炉研制[J]. 真空, 2020, 57(3): 30-33.
[6] 冉彪, 刘飞, 于翔. 利用非晶SiC在硬质合金上原位生长石墨烯[J]. 真空, 2019, 56(4): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .