真空 ›› 2024, Vol. 61 ›› Issue (1): 27-33.doi: 10.13385/j.cnki.vacuum.2024.01.04
赵祯赟1, 陈定君2, 郭圆萌1, 杨皓1, 东帅1, 孙铁生1, 黄美东1
ZHAO Zhen-yun1, CHEN Ding-jun2, GUO Yuan-meng1, YANG Hao1, DONG Shuai1, SUN Tie-sheng1, HUANG Mei-dong1
摘要: 利用电弧离子镀膜技术,以硅片、不锈钢、玻璃片为基底,在脉冲偏压分别为50 V、100 V、150 V的条件下制备了三组氮化铬薄膜样品,对其物相、表面形貌、力学性能及不同温度下的疏水性能进行了分析研究。结果表明:所制备薄膜样品组分单一,表面存在些许“大颗粒”,当脉冲偏压为100 V时“大颗粒”数量最多;氮化铬薄膜力学性能优良,150 V脉冲偏压下沉积的薄膜具有较高的硬度和杨氏模量,50 V脉冲偏压样品具有较高的膜基结合力;常温(20 ℃)下薄膜疏水性均较好,基底材料对疏水性能影响不大;各组薄膜疏水性能随环境温度的增加而降低,当环境温度上升至80 ℃时脉冲偏压为50 V的薄膜丧失疏水性能, 脉冲偏压为100 V的薄膜样品疏水性能整体较优。
中图分类号: TB79
[1] | ZHANG M J, GUO C F, HU J .One-step fabrication of flexible superhydrophobic surfaces to enhance water repellency[J]. Surface & Coatings Technology, 2020, 400:126155. |
[2] | ZHANG B B, XU W C, XIA D H, et al.Spray coated superamphiphobic surface with hot water repellency and durable corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 596: 124750. |
[3] | LI J, ZHAO Z H, KANG R M, et al.Robust superhydrophobic candle soot and silica composite sponges for efficient oil/water separation in corrosive and hot water[J]. Journal of Sol-Gel Science and Technology, 2017, 82(3): 817-826. |
[4] | YI L, HAN J P, CAI M Y, et al.Durable and robust transparent superhydrophobic glass surfaces fabricated by femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 2018, 6(19): 9049-9056. |
[5] | BEATRIZ G, JAVIER S P, ROSER G C.Mussel-inspired hydrophobic coatings for water-repellent textiles and oil removal[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17616-17625. |
[6] | HECKENTHALER T, SADHUJAN S, MORGENSTERN Y, et al.The self-cleaning mechanism: why nanotexture and hydrophobicity matter[J]. Langmuir, 2019, 35: 15526-15534. |
[7] | LU Y, SATHASIVAM S, SONG J, et al.Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226): 1132-1135. |
[8] | ZANG D M, ZHU R W, ZHANG W, et al.Corrosion- resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27(8): 1605446. |
[9] | SHI S E, ZHANG Z M, YU L M.Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection[J]. Synthetic Metals, 2017, 233: 94-100. |
[10] | HU H B, WEN J, BAO L Y, et al.Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): 1603288. |
[11] | WANG Z C, LIU X J, JI J W, et al.Underwater drag reduction and buoyancy enhancement on biomimetic antiabrasive superhydrophobic coatings[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 48270-48280. |
[12] | ZHAO X X, PARK D S, CHOI J, et al.Robust, transparent, superhydrophobic coatings using novel hydrophobic/hydrophilic dual-sized silica particles[J]. Journal of Colloid and Interface Science, 2020, 574: 347-354. |
[13] | XU C L, SONG F, WANG X L, et al.Surface modification with hierarchical CuO arrays toward a flexible, durable superhydrophobic and self-cleaning material[J]. Chemical Engineering Journal, 2017, 313: 1328-1334. |
[14] | FENG X, FENG L, JIN M, et al.Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films[J]. Journal of the American Chemical Society, 2004, 126(1): 62-63. |
[15] | HE X M, BAKER N, KEHLER B A, et al.Structure, hardness, and tribological properties of reactive magnetron sputtered chromium nitride films[J]. Journal of Vacuum Science & Technology A, 2000, 18(1): 30-36. |
[16] | 杨娟. 脉冲偏压电弧离子镀氮化铬涂层的制备技术及性能[D]. 重庆:西南大学, 2009. |
[17] | 车德良. 多弧离子镀氮化物薄膜的性能及应用[D]. 大连:大连理工大学, 2005. |
[18] | 王福贞, 周友苏, 唐希源, 等. 多弧离子镀中磁场对电弧运动影响的研究[J]. 真空科学与技术, 1991(3): 191-196. |
[19] | WANG X, LIU X H, ZOU S C, et al.Atomic force microscopy study on topography of films produced by ion-based techniques[J]. Journal of Applied Physics, 1996, 80(5): 2658-2664. |
[20] | JONAS A M, CAI R, VERMEYEN R, et al.How roughness controls the water repellency of woven fabrics[J]. Materials & Design, 2019, 187: 108389. |
[21] | ZDZIENNICKA A, KRAWCZYK J, SZYMCZYK K, et al.Components and parameters of liquids and some polymers surface tension at different temperature[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 864-875. |
[22] | 宋嘉文. 高温高压环境下水在固体表面接触角的温度和压力依赖性研究[D]. 杭州:浙江大学, 2022. |
[1] | 刘海静, 董德胜, 王晓占, 李灿伦, 冯蕾, 季琨, 靳兆峰. 高真空冷黑环境下大面阵黑体定标器控温应用研究[J]. 真空, 2024, 61(1): 74-77. |
[2] | 卢少波, 韩永超, 宋艳鹏, 张吉峰. 用于核电元件制造的深井式真空钎焊设备设计[J]. 真空, 2023, 60(3): 72-75. |
[3] | 苏菲, 王魁汉, 夏春明, 赵晓东. AMS2750F标准的解读与温度传感器的开发[J]. 真空, 2023, 60(2): 78-85. |
[4] | 刘兴龙, 沈佩, 王光文, 岳向吉, 蔺增. 真空电弧源冷却结构对温度场的影响研究*[J]. 真空, 2022, 59(6): 29-33. |
[5] | 翟艳坤, 白雪卫, 张凤宇, 徐铭泽, 苑仁月, 陈俊寅, 黄海波. 高能束熔覆涂层质量缺陷形成机理及控制方法研究现状*[J]. 真空, 2022, 59(6): 78-86. |
[6] | 刘洋, 张雅楠, 高晟元, 赵祯赟, 郑明昊, 黄美东. 多弧离子镀Zr/ZrN多层膜的力学性能研究*[J]. 真空, 2022, 59(5): 28-31. |
[7] | 刘海静, 李灿伦, 路同山, 孙成恺, 李卓慧, 祁松松, 刘家林. 大口径超长U型气体池研制与分析[J]. 真空, 2021, 58(6): 55-58. |
[8] | 解永强, 靳丽岩, 杨晓东, 王成君, 夏丹, 苏春. 基于半导体器件钎焊技术的温度场研究[J]. 真空, 2021, 58(4): 58-62. |
[9] | 吕乾乾, 孙振川, 周建军, 杨振兴, 陈瑞祥, 游慧杰. 低真空管道系统性能室内实验研究*[J]. 真空, 2021, 58(3): 7-12. |
[10] | 余清洲, 张俊, 李斌, 高明燚, 刘明昆, 柴晓彤, 干蜀毅. 空调散热器真空除油干燥箱温度场优化[J]. 真空, 2021, 58(1): 82-85. |
[11] | 张世伟, 孙坤, 韩峰. 螺杆真空泵设计的常见问题分析[J]. 真空, 2021, 58(1): 23-28. |
[12] | 胡纯栋, 郎嘉琪, 谢远来, 王铭翔, 张照元, NBI团队. 中性束注入器低温真空空间气体温度分布模拟研究*[J]. 真空, 2020, 57(5): 75-78. |
[13] | 向玉春. 衬底温度对脉冲激光沉积法制备的CuO薄膜性能的影响[J]. 真空, 2020, 57(5): 24-27. |
[14] | 赵兴旺, 刘艳梅, 付和国, 史吉鹏, 关峰. TC4薄壁钛合金激光对接接头组织及力学性能研究*[J]. 真空, 2020, 57(4): 89-94. |
[15] | 高超, 张吉峰, 唐榕. 应用于石墨烯制备的CVD反应炉研制[J]. 真空, 2020, 57(3): 30-33. |
|