欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (4): 11-18.doi: 10.13385/j.cnki.vacuum.2020.04.03

• 薄膜 • 上一篇    下一篇

薄膜的材料特征*

张爽1, 董闯1,2, 马艳平2,3, 丁万昱1   

  1. 1.大连交通大学,材料科学与工程学院,辽宁省高等学校光电材料与器件工程技术研究中心,大连 116028;
    2.大连理工大学,三束材料改性教育部重点实验室,大连 116024;
    3.海南大学,海南省特种玻璃重点实验室,海口 570228
  • 收稿日期:2019-08-09 出版日期:2020-07-25 发布日期:2020-07-23
  • 通讯作者: 董闯,教授,博导。
  • 作者简介:张爽(1990-),女,吉林省吉林市人,博士,讲师。
  • 基金资助:
    *辽宁省教育厅科学研究项目(项目编号:JDL2019023); 辽宁省自然科学基金(项目编号:2020-BS-208); 国家重点研发计划(批准号:2016YFB0101206); 国家自然科学基金(项目编号:51761010以及51772038); 海南省特种玻璃重点实验室(海南大学)开放课题

Material Characteristics of Thin Films

ZHANG Shuang1, DONG Chuang1,2, MA Yan-ping2,3, DING Wan-yu1   

  1. 1. Engineering Research Center of Optoelectronic Materials and Devices, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China;
    2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024, China;
    3. State Key Laboratory of Marine Resource Utilization in South China Sea & Special Glass Key Laboratory of Hainan Province, School of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
  • Received:2019-08-09 Online:2020-07-25 Published:2020-07-23

摘要: PVD、CVD涂层行业发展了多年,出现了多种等离子体和高能束辅助技术,但常用的工业涂层却集中在少数几种材料上,如金属氮化物、碳膜等。本文从材料的成分宽容性、结构稳定性、导电性三个基本原则出发,解释了薄膜材料的选材问题,并以氮化钛、非晶硼化物、金属掺杂类金刚石涂层为例,说明薄膜材料的选择源自工艺特性和材料性能二者的平衡,且以工艺性为主导。材料成分需要进行精确调控,以达到最佳的工艺性与性能的匹配,而成分根源是化学近程序结构,通过引入本课题组所提出并发展的团簇加连接原子模型,构建出类似于分子式的局域结构单元和相应成分式,进而对薄膜材料进行成分设计。

关键词: 薄膜材料, 成分设计, 氮化钛, 非晶硼化物, 金属掺杂类金刚石, 团簇加连接原子模型

Abstract: There are a variety of PVD and CVD coating techniques using plasma and energetic beams. However, commonly used industrial coatings involve only a few materials, such as metal nitrides and amorphous carbon. To address such a phenomenon, this paper proposes three basic principles of thin film material selection, i.e., composition tolerance, structural stability and electrical conductivity. Three kinds of typical coating materials are then explained based on the principles, namely titanium nitride representative of solid solution materials, amorphous boride, and Cr-doped diamond-like carbon, stressing that the selection of thin film materials is derived from the balance between process characteristics and material performance, and is dominated by processability. It is pointed out that the material compositions must be precisely regulated to achieve the best matching of processability and performance, while material compositions are rooted in chemical short-range-order structures. By introducing the cluster-plus-glue-atom model developed by our research group, molecule-like local structural units and the corresponding composition formulas are constructed and they explain the compositions of thin film materials in use. The perspective of using this method as thin film composition design is envisaged.

Key words: thin films, composition design, titanium nitride, amorphous boride, metal-doped diamond-like carbon, cluster-plus-glue-atom model

中图分类号: 

  • TB43
[1] Venables J A.Introduction to Surface and Thin Film Processes [M]. Cambridge: Cambridge University Press, 2000.
[2] 徐滨士, 刘世参. 中国材料工程大典(第16卷)材料表面工程(上) [M]. 北京: 化学工业出版社, 2005.
[3] Sudarshan T S, 范玉殿. 表面改性技术(工程师指南) [M]. 北京: 清华大学出版社, 1992.
[4] 董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018,54(2):293-300.
[5] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. Journal of Physics D: Applied Physics, 2007, 40(15): R273-R291.
[6] Oyama S T.The Chemistry of Transition Metal Carbides and Nitrides[M]. London: Blackie Academic & Professional, 1996.
[7] Cselle T, Barimani A. Today's applications and future developments of coatings for drills and rotating cutting tools[J]. Surf. Coat. Technol., 1995,76-77(2):712-718.
[8] Madaoui N, Saoula N, Zaid B, et al.Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution[J]. Applied Surface Science, 2014,312:134-138.
[9] Sundgren J E, Johansson B O, Rockett A, et al.TiNx (0.6<x<1.2): Atomic arrangements, Electronic structure and recent results on crystal growth and physical properties of epitaxial layers[C]//AIP Conference Proceedings. American Institute of Physics, 1986, 149(1): 95-115.
[10] Lee Y K, Kim J Y, Lee Y K, et al.Surface chemistry of non-stoichiometric TiNx films grown on (1 0 0)Si substrate by DC reactive magnetron sputtering[J]. Journal of Crystal Growth, 2002,234:498-504.
[11] Massalski T B, Okamoto H, Subramanian P R, et al.Binary Alloy Phase Diagrams[M]. Second Edition Plus Updates ed. USA: ASM International, 1990.
[12] Ma Y, Dong D, Wu A, et al.Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model[J]. Inorg. Chem., 2018,57(2):710-717.
[13] O'hern M E, Parrish R H, Oliver W C. Evaluation of mechanical properties of TiN films by ultralow load indentation[J]. Thin Solid Films, 1989,181:357-363.
[14] Sue J A.Development of arc evaporation of non-stoichiometric titanium nitride coatings[J]. Surf. Coat. Technol., 1993, 61(1-3):115-120.
[15] Arnell R D, Colligon J S, Minnebaev K F, et al.The effect of nitrogen content on the structure and mechanical properties of TiN films produced by magnetron sputtering[J]. Vacuum, 1996,47(5):425-431.
[16] Han K, Lin G, Dong C, et al.Nitrogen concentration dependent mechanical properties of TiNx single-phase films(0.75≤x≤0.99)[J]. Ceram. Int., 2016,42(8): 10332-10337.
[17] 韩克昌. 电弧离子镀过渡金属氮化物硬质薄膜的成分设计基础研究 [D]. 大连: 大连理工大学, 2017.
[18] 郑学家. 硼化合物生产与应用 [M]. 北京: 化学工业出版社, 2007.
[19] Albert B, Hillebrecht H.Boron: elementary challenge for experimenters and theoreticians[J]. Angew. Chem. Int. Ed. Engl., 2009,48(46):8640-8668.
[20] Matkovich V I, Economy J.Structure of MgAlB14 and a brief critique of structural relationships in higher borides[J]. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1970, B26: 616-621.
[21] Yan C, Zhou Z F, Chong Y M, et al.Synthesis and characterization of hard ternary AlMgB composite films prepared by sputter deposition[J]. Thin Solid Films, 2010,518(19):5372-5377.
[22] Wu Z, Bai Y, Qu W, et al.Al-Mg-B thin films prepared by magnetron sputtering[J]. Vacuum, 2010,85(4):541-545.
[23] Cook B A, Harringa J L, Lewis T L, et al.A new class of ultra-hard materials based on AlMgB14[J]. Scr. Mater., 2000,42:597-602.
[24] Yan C, Qian J C, Ng T W, et al.Sputter deposition of hard quaternary Al-Mg-B-Ti nanocomposite films[J]. Surf. Coat. Technol., 2013,232:535-540.
[25] Adasch V, Hess K U, Ludwig T, et al.Synthesis, crystal structure, and properties of two modifications of MgB12C2[J]. Chemistry, 2007,13(12):3450-3458.
[26] Jiang X, Zhao J, Wu A, et al.Mechanical and electronic properties of B12-based ternary crystals of orthorhombic phase[J]. Journal of Physics: Condensed Matter, 2010,22(31):315503.
[27] Wang Z R, Qiang J B, Wang Y M, et al.Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Materialia, 2016,111:366-376.
[28] Zhang S, Dong D, Wang Z, et al.Composition formulas of Ni-(Nb, Ta) bulk metallic glasses[J]. Intermetallics, 2017,85:176-179.
[29] Zhang S, Dong D, Wang Z, et al.Spherical periodicity as structural homology of crystalline and amorphous states[J]. Science China Materials, 2018,61(3):409-416.
[30] 张爽. 晶体相中的球周期共振结构 [D]. 大连: 大连理工大学, 2019.
[31] 罗灵杰. 团簇加连接原子模型的修正及其在金属玻璃和共晶合金成分解析中的应用 [D]. 大连: 大连理工大学, 2013.
[32] Dong D, Zhang S, Wang Z, et al.Composition interpretation of binary bulk metallic glasses via principal cluster definition[J]. Materials & Design, 2016, 96: 115-121.
[33] Luo L J, Chen H, Wang Y M, et al.24 electron cluster formulas as the ‘molecular’ units of ideal metallic glasses[J]. Philosophical Magazine, 2014,94(22):2520-2540.
[34] Xia J, Qiang J, Wang Y, et al.Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron[J]. Appl. Phys. Lett., 2006,88(10):101907.
[35] 周徐洋. B-C-Mg非晶薄膜的成分设计、制备及表征 [D]. 大连:大连理工大学, 2014.
[36] Chen J X, Wang Q, Wang Y M, et al.Cluster formulae for alloy phases[J]. Philosophical Magazine Letters, 2010,90(9):683-688.
[37] Zhou X, Ma Y, Gong F, et al.Amorphous-based B-C-Mg thin films obtained through a composition design using cluster-plus-glue-atom model[J]. Surf. Coat. Technol., 2014, 242: 14-19.
[38] Han G, Qiang J, Li F, et al.The e/a values of ideal metallic glasses in relation to cluster formulae[J]. Acta Materialia, 2011,59(15):5917-5923.
[39] 隋志通, 隋升, 罗冬梅. 燃料电池及其应用[M]. 1版. 北京: 冶金工业出版社, 2004.
[40] Aisenberg S, Chabot R.Ion‐beam deposition of thin films of diamondlike carbon[J]. Journal of Applied Physics, 1971,42(7):2953-2958.
[41] Li X, Ke P, Wang A.Probing the Stress Reduction Mechanism of Diamond-Like Carbon Films by Incorporating Ti, Cr, or W Carbide-Forming Metals: Ab Initio Molecular Dynamics Simulation[J]. The Journal of Physical Chemistry C, 2015,119(11):6086-6093.
[42] Li X, Sun L, Guo P, et al.Structure and residual stress evolution of Ti/Al, Cr/Al or W/Al co-doped amorphous carbon nanocomposite films: Insights from ab initio calculations[J]. Materials & Design, 2016,89:1123-1129.
[43] Li X, Ke P, Wang A.Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations[J]. AIP Advances, 2015,5(1):017111.
[44] 王同. 耐蚀导电掺铬类金刚石的团簇加连接原子模型及成分式 [D]. 大连: 大连理工大学, 2018.
[1] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 2020, 57(4): 95-96.
[2] 高鹏, 金秀, 任少鹏, 王忠连, 赵帅锋, 阴晓俊. 浅谈国内外光学薄膜技术标准[J]. 真空, 2020, 57(4): 19-23.
[3] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 0, (): 94-96.
[4] 方波, 张林, 蔡飞, 张世宏. 冷作模具钢等离子渗镀CrVN复合涂层摩擦磨损性能研究*[J]. 真空, 2020, 57(2): 33-39.
[5] 刘灵云, 林松盛, 王迪, 李风, 代明江, 石倩, 韦春贝. CrAlN抗冲蚀涂层制备及性能研究*[J]. 真空, 2020, 57(2): 40-46.
[6] 夏翥杰, 张治国, 王红莉, 苏一凡, 唐鹏, 林松盛, 代明江, 石倩. WO3薄膜制备及其电致变色性能研究*[J]. 真空, 2020, 57(2): 47-52.
[7] 岳玲, 石月娟, 马玉山, 刘海波, 周永兴, 张明明, 巩春志, 田修波. 内径20mm导向套筒内壁处理(1):空心阴极氩气放电特性研究*[J]. 真空, 2020, 57(2): 53-57.
[8] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 2020, 57(2): 94-96.
[9] 陈志涛. 全玻璃真空集热管镀膜设备的发展[J]. 真空, 2020, 57(1): 35-39.
[10] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 2020, 57(1): 94-96.
[11] 王忠连, 任少鹏, 阴晓俊, 王瑞生, 高鹏, 班超, 胡雯雯. 波长渐变滤光片的设计与测试探讨[J]. 真空, 2020, 57(1): 21-25.
[12] 吴厚朴, 田钦文, 田修波, 巩春志. 新型双极性高功率脉冲磁控溅射电源及放电特性研究*[J]. 真空, 2019, 56(6): 1-6.
[13] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 2019, 56(6): 85-86.
[14] 李昊, 王东伟, 张川, 刘婵, 黄美东. 电弧离子镀Cr/CrN多层膜的耐腐蚀性研究[J]. 真空, 2019, 56(3): 21-26.
[15] 张以忱. 第二十讲 真空离子镀膜[J]. 真空, 2019, 56(3): 78-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .