欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (5): 75-80.doi: 10.13385/j.cnki.vacuum.2023.05.12

• Vacuum Acquisition System • Previous Articles     Next Articles

Performance Test of 200mm Diameter Cryopump for Semiconductor PVD Usage

DENG Jia-liang1,2, ZENG Huan1,2, YANG Yang2, FENG Xin-yu1,2, WU Yi-feng1,2   

  1. 1. The 16th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China;
    2. Vacree Technologies Co., Ltd., Hefei 230088, China
  • Received:2023-06-21 Online:2023-09-25 Published:2023-09-26

Abstract: Cool-down time, base pressure, pumping speed and gas capacity are key parameters of cryopump. In this paper systematic measurements and analysis of 200mm diameter ICP200N cryopump with the designed comprehensive performance test platform were carried out. The results show that the cool-down time of ICP200N cryopump is less than 90 minutes. The base pressure can reach the level of 10-7Pa without baking, and the main residual gas ingredients are water and hydrogen. The testing method of 30s recovery capacity was given, which is very important in the realistic PVD applications. The corresponding capacity for argon and nitrogen is 820L and 590L, respectively. A simple flow calibration device to improve the pumping speed measurement accuracy was also designed, and the test results show that the nitrogen and argon pumping speed of ICP200N cryopump is comparable with that of international mainstream competitor. So far the ICP200N cryopump has been widely used in the PVD equipment of domestic semiconductor production line.

Key words: cryopump, cool-down time, base pressure, pumping speed, gas capacity

CLC Number:  TB752+.53

[1] 陈译, 陈铖颖, 张宏怡. 半导体工艺与设备[M]. 北京: 机械工业出版社, 2021.
[2] 孙立臣, 赵月帅, 李明利, 等. 空间环模用大口径制冷机低温泵研制技术现状和发展[J]. 真空, 2018, 55(1): 1-6.
[3] 曾环, 杨杨, 武义锋, 等. G-M制冷机低温泵减振设计和抽氢性能研究[J]. 低温与超导, 2023, 51(5): 78-84.
[4] 赵保旭, 张名飞, 郭林, 等. CFETR双阀门结构低温泵设计[J]. 现代制造工程. 2022(8): 123-128.
[5] 陈国邦, 汤珂. 小型低温制冷机原理[M]. 北京: 科学出版社, 2009.
[6] 徐烈. 低温真空技术[M]. 北京: 机械工业出版社, 2008.
[7] 冯欣宇, 杨杨. 集成电路制造用制冷机低温泵发展现状[J]. 真空, 2022, 59(2): 42-47.
[8] PARK J, KO J, KIM H,et al.Development of a large capacity cryopump equipped with a two-stage GM cryocooler[J]. Applied Thermal Engineering. 2022, 217:119217.
[9] 曾环, 邓家良, 孙志和. 250mm口径低温泵设计[J]. 真空, 2020, 57(2): 13-16.
[10] 冯欣宇, 邓家良, 曾环, 等. 制冷机低温泵控制器设计[J]. 低温与超导, 2019, 47(7): 24-28.
[11] MUKHERJEE S, PANCHAL P, NAYAK P, et al.Nitrogen and water vapor pumping study on a 400mm opening LN2 cooled sorption cryopump[J]. Vacuum. 2020, 184: 109883.
[12] 周亚琦, 冯汉升, 张子健,等. 大型聚变装置低温泵测试平台的初步设计[J]. 低温与超导. 2022, 50(12): 59-66.
[13] 全国真空技术标准化技术委员会.真空技术-制冷机低温泵:JB/T 11081—2011[S]. 北京: 机械工业出版社, 2011.
[14] DE RIJKE J E. Factors affecting cryopump base pressure[J]. Journal of Vacuum Science & Technology A, 1990, 8(3): 2778-2781.
[15] 谢远来, 汪明明, 陶玲, 等.低温吸附泵用椰壳活性炭的性能测试[J].低温技术, 2010, 38(1): 13-16.
[16] DAY C. The use of active carbon as cryosorbent[J]. Colloids and Surface A: Physicochemical and Engineering Aspects, 2001, 187/188: 187-206.
[17] 董猛, 冯焱, 成永军,等. 材料在真空环境下放气的测试技术研究[J]. 真空与低温, 2014, 20(1):46-51.
[18] 马树微,王文龙,商圣飞,等. 大口径低温泵抽速性能研究[J]. 真空科学与技术学报,2014,34(12):1375-1379.
[19] 罗云, 陈晓怀, 谢远来.低温泵抽气性能测试平台的抽速测量不确定度研究[J]. 低温技术, 2009, 37(4): 6-9.
[20] WELCH K M, ANDEEN B, DE RIJKE J E, et al. Recommended practices for measuring the performance and characteristics of closed-loop gaseous helium cryopumps[J]. Journal of Vacuum Science & Technology A, 1999, 17(5): 3081-3095.
[21] 全国安全生产标准化技术委员会.氢气使用安全技术规程: GB 4962-2008[S]. 北京:中国标准出版社, 2009.
[1] LIU Shun-ming, SONG Hong, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, SUN Xiao-yang, CHEN Wei-dong, LIU Sheng-jin, OUYANG Hua-fu. Vacuum System for CSNS II Ion Source and LEBT [J]. VACUUM, 2022, 59(4): 22-27.
[2] FENG Xin-yu, YANG yang. Current Status of Refrigerator Cryopump for IC Manufacturing [J]. VACUUM, 2022, 59(2): 42-47.
[3] LIAO Ze-yu, MAO Shi-feng, ZHAO Chang-lian, YE Min-you. DSMC Simulation Study on the Pumping Performance of Linear Mercury Diffusion Pump for Exhaust Gas of Fusion Reactor [J]. VACUUM, 2022, 59(2): 26-31.
[4] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[5] ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Li-yuan, JIANG Zheng-he. Design of Vacuum Pumping System for Electron Beam Melting Furnace [J]. VACUUM, 2021, 58(5): 42-45.
[6] WANG Jun-ru, YU Yao-wei, CAO Bin, ZHUANG Hui-dong, HU Jian-sheng. Design and Research on the Vacuum System of Material Sputtering Experimental Device for the Fusion First Wall Material [J]. VACUUM, 2021, 58(5): 32-36.
[7] YU Jin-jun, DO Xin, LIU Min-qiang. Design of a Compound Molecular Pump With Ultra-high Vacuum and High Pumping Speed [J]. VACUUM, 2021, 58(4): 36-41.
[8] LI Bo, LIU Jun-nan, ZHANG Min, XUE Song, CHEN Ming. Ion Pump Performance Test Used by Shanghai Synchrotron Radiation Facility [J]. VACUUM, 2021, 58(3): 13-16.
[9] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M [J]. VACUUM, 2021, 58(1): 33-37.
[10] ZENG Huan, DENG Jia-liang, SUN Zhi-he. Design of the 250mm Caliber Cryopump [J]. VACUUM, 2020, 57(2): 13-16.
[11] ZHAO Chang-lian, MAO Shi-feng, LIU Peng, QIN Shi-jun, YU Yi, YE Min-you. DSMC Simulation Study of Influence of Nozzle Angle on Pumping Performance of Mercury Diffusion Pump [J]. VACUUM, 2020, 57(2): 8-12.
[12] ZHAO Yue-shuai, SUN Li-chen, SHAO Rong-ping, YAN Rong-xin, SUN Wei, LI Zheng. Design and performance test of DN1250 LN2 refrigerator cooled cryopumps [J]. VACUUM, 2019, 56(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!